Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Oct 2024]
Title:Online Pseudo-Label Unified Object Detection for Multiple Datasets Training
View PDF HTML (experimental)Abstract:The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations issue, and propose an Online Pseudo-Label Unified Object Detection scheme. Our method uses a periodically updated teacher model to generate pseudo-labels for the unlabelled objects in each sub-dataset. This periodical update strategy could better ensure that the accuracy of the teacher model reaches the local maxima and maximized the quality of pseudo-labels. In addition, we survey the influence of overlapped region proposals on the accuracy of box regression. We propose a category specific box regression and a pseudo-label RPN head to improve the recall rate of the Region Proposal Network (PRN). Our experimental results on common used benchmarks (\eg COCO, Object365 and OpenImages) indicates that our online pseudo-label UOD method achieves higher accuracy than existing SOTA methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.