Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Oct 2024]
Title:Classifying Healthy and Defective Fruits with a Multi-Input Architecture and CNN Models
View PDF HTML (experimental)Abstract:This study presents an investigation into the utilization of a Multi-Input architecture for the classification of fruits (apples and mangoes) into healthy and defective states, employing both RGB and silhouette images. The primary aim is to enhance the accuracy of CNN models. The methodology encompasses image acquisition, preprocessing of datasets, training, and evaluation of two CNN models: MobileNetV2 and VGG16. Results reveal that the inclusion of silhouette images alongside the Multi-Input architecture yields models with superior performance compared to using only RGB images for fruit classification, whether healthy or defective. Specifically, optimal results were achieved using the MobileNetV2 model, achieving 100\% accuracy. This finding suggests the efficacy of this combined methodology in improving the precise classification of healthy or defective fruits, which could have significant implications for applications related to external quality inspection of fruits.
Submission history
From: Luis Chuquimarca Jiménez [view email][v1] Mon, 14 Oct 2024 21:37:12 UTC (1,264 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.