Computer Science > Robotics
[Submitted on 2 Nov 2023 (v1), last revised 26 Jan 2025 (this version, v5)]
Title:Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
View PDF HTML (experimental)Abstract:Contact-rich tasks continue to present many challenges for robotic manipulation. In this work, we leverage a multimodal visuotactile sensor within the framework of imitation learning (IL) to perform contact-rich tasks that involve relative motion (e.g., slipping and sliding) between the end-effector and the manipulated object. We introduce two algorithmic contributions, tactile force matching and learned mode switching, as complimentary methods for improving IL. Tactile force matching enhances kinesthetic teaching by reading approximate forces during the demonstration and generating an adapted robot trajectory that recreates the recorded forces. Learned mode switching uses IL to couple visual and tactile sensor modes with the learned motion policy, simplifying the transition from reaching to contacting. We perform robotic manipulation experiments on four door-opening tasks with a variety of observation and algorithm configurations to study the utility of multimodal visuotactile sensing and our proposed improvements. Our results show that the inclusion of force matching raises average policy success rates by 62.5%, visuotactile mode switching by 30.3%, and visuotactile data as a policy input by 42.5%, emphasizing the value of see-through tactile sensing for IL, both for data collection to allow force matching, and for policy execution to enable accurate task feedback. Project site: this https URL
Submission history
From: Jonathan Kelly [view email][v1] Thu, 2 Nov 2023 14:02:42 UTC (5,807 KB)
[v2] Fri, 22 Dec 2023 19:27:53 UTC (12,958 KB)
[v3] Wed, 26 Jun 2024 17:40:14 UTC (13,609 KB)
[v4] Tue, 3 Dec 2024 20:56:48 UTC (13,609 KB)
[v5] Sun, 26 Jan 2025 15:03:06 UTC (13,609 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.