Electrical Engineering and Systems Science > Systems and Control
[Submitted on 6 Jan 2023]
Title:A Robust Data-driven Process Modeling Applied to Time-series Stochastic Power Flow
View PDFAbstract:In this paper, we propose a robust data-driven process model whose hyperparameters are robustly estimated using the Schweppe-type generalized maximum likelihood estimator. The proposed model is trained on recorded time-series data of voltage phasors and power injections to perform a time-series stochastic power flow calculation. Power system data are often corrupted with outliers caused by large errors, fault conditions, power outages, and extreme weather, to name a few. The proposed model downweights vertical outliers and bad leverage points in the measurements of the training dataset. The weights used to bound the influence of the outliers are calculated using projection statistics, which are a robust version of Mahalanobis distances of the time series data points. The proposed method is demonstrated on the IEEE 33-Bus power distribution system and a real-world unbalanced 240-bus power distribution system heavily integrated with renewable energy sources. Our simulation results show that the proposed robust model can handle up to 25% of outliers in the training data set.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.