Computer Science > Information Theory
[Submitted on 14 Jun 2022]
Title:Efficient Private Storage of Sparse Machine Learning Data
View PDFAbstract:We consider the problem of maintaining sparsity in private distributed storage of confidential machine learning data. In many applications, e.g., face recognition, the data used in machine learning algorithms is represented by sparse matrices which can be stored and processed efficiently. However, mechanisms maintaining perfect information-theoretic privacy require encoding the sparse matrices into randomized dense matrices. It has been shown that, under some restrictions on the storage nodes, sparsity can be maintained at the expense of relaxing the perfect information-theoretic privacy requirement, i.e., allowing some information leakage. In this work, we lift the restrictions imposed on the storage nodes and show that there exists a trade-off between sparsity and the achievable privacy guarantees. We focus on the setting of non-colluding nodes and construct a coding scheme that encodes the sparse input matrices into matrices with the desired sparsity level while limiting the information leakage.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.