An energy-preserving finite difference method is first presented for solving the nonlinear coupled space-fractional Klein-Gordon (KG) equations. The discrete conservation law, boundedness of the numerical solutions and convergence of the numerical schemes are obtained. These results are proved by the recent developed fractional Sobolev inequalities, the matrix analytical methods and so on. Numerical experiments are carried out to confirm the theoretical findings.
Citation: Min Li, Ju Ming, Tingting Qin, Boya Zhou. Convergence of an energy-preserving finite difference method for the nonlinear coupled space-fractional Klein-Gordon equations[J]. Networks and Heterogeneous Media, 2023, 18(3): 957-981. doi: 10.3934/nhm.2023042
An energy-preserving finite difference method is first presented for solving the nonlinear coupled space-fractional Klein-Gordon (KG) equations. The discrete conservation law, boundedness of the numerical solutions and convergence of the numerical schemes are obtained. These results are proved by the recent developed fractional Sobolev inequalities, the matrix analytical methods and so on. Numerical experiments are carried out to confirm the theoretical findings.
[1] | J. Zhang, On the standing wave in coupled nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 26 (2003), 11–25. https://doi.org/10.1002/mma.340 doi: 10.1002/mma.340 |
[2] | V. Makhankov, Dynamics of classical solitons in non-integrable systems, Phys. Rep, 35 (1978), 1–128. https://doi.org/10.1016/0370-1573(78)90074-1 doi: 10.1016/0370-1573(78)90074-1 |
[3] | K. Jörgens, Nonlinear Wave Equation, Lecture Notes, University of Colordo, 1970. |
[4] | L. Medeiros, M. M. Miranda, Weak solutions for a system of nonlinear Klein-Gordon equations, Ann. Math. Pure Appl., 146 (1986), 173–183. https://doi.org/10.1007/BF01762364 doi: 10.1007/BF01762364 |
[5] | A. Biswas, A. H. Kara, L. Moraru, A. H. Bokhari, F. D. Zaman, Conservation laws of coupled Klein-Gordon equations with cubic and power law nonlinearities, Proc. Rom. Acad. Sci. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 15 (2014), 123–129. |
[6] | V. Benci, D. F. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409–420. https://doi.org/10.1142/S0129055X02001168 doi: 10.1142/S0129055X02001168 |
[7] | I. Fukuda, M. Tsutsumi, On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions, Proc. Jpn. Acad. Ser. A, Math. Sci., 51 (1975), 402–405. https://doi.org/10.3792/pja/1195518563 doi: 10.3792/pja/1195518563 |
[8] | I. Segal, Nonlinear partial differential equations in quantum field theory, Proc. Symp. Appl. Math. AMS., 17 (1965), 210–226. |
[9] | M. Tsutsumi, Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions, Nonlinear Anal. Theory Methods Appl., 8 (1984), 637–643. https://doi.org/10.1016/0362-546X(84)90008-7 doi: 10.1016/0362-546X(84)90008-7 |
[10] | Joseph, P. Subin, New traveling wave exact solutions to the coupled Klein-Gordon system of equations, Partial Differ. Equations Appl. Math., 5 (2022), 100208. https://doi.org/10.1016/j.padiff.2021.100208 doi: 10.1016/j.padiff.2021.100208 |
[11] | D. Deng, D. Liang, The energy-preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions, Appl. Numer. Math., 151 (2020), 172–198. https://doi.org/10.1016/j.apnum.2019.12.024 doi: 10.1016/j.apnum.2019.12.024 |
[12] | M. He, P. Sun, Energy-preserving finite element methods for a class of nonlinear wave equations, Appl. Numer. Math., 157 (2020), 446–469. https://doi.org/10.1016/j.apnum.2020.06.016 doi: 10.1016/j.apnum.2020.06.016 |
[13] | X. Zhu, M. He, P. Sun, Comparative Studies on Mesh-Free deep neural network approach versus finite element method for solving coupled nonlinear hyperbolic/wave equations, Int. J. Numer. Anal. Mod., 19 (2022), 603–629. |
[14] | D. Deng, Q. Wu, The error estimations of a two-level linearized compact ADI method for solving the nonlinear coupled wave equations, Numer. Algorithms, 89 (2022), 1663–1693. https://doi.org/10.1007/s11075-021-01168-9 doi: 10.1007/s11075-021-01168-9 |
[15] | D. Deng, Q. Wu, The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations, Numer. Algorithms, 88 (2021), 1875–1914. https://doi.org/10.1007/s11075-021-01099-5 doi: 10.1007/s11075-021-01099-5 |
[16] | D. Deng, Q. Wu, Accuracy improvement of a Predictor-Corrector compact difference scheme for the system of two-dimensional coupled nonlinear wave equations, Math. Comput. Simul., 203 (2023), 223–249. https://doi.org/10.1016/j.matcom.2022.06.030 doi: 10.1016/j.matcom.2022.06.030 |
[17] | D. Deng, Q. Wu, Error estimations of the fourth-order explicit Richardson extrapolation method for two-dimensional nonlinear coupled wave equations, Comput. Appl. Math., 41 (2022), 1–25. https://doi.org/10.1007/s40314-021-01701-5 doi: 10.1007/s40314-021-01701-5 |
[18] | X. Cheng, J. Duan, D. Li, A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations, Appl. Math. Comput., 346 (2019), 452–464. https://doi.org/10.1016/j.amc.2018.10.065 doi: 10.1016/j.amc.2018.10.065 |
[19] | J. Wang, A. Xiao, Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 350 (2019), 348–365. https://doi.org/10.1016/j.amc.2018.12.046 doi: 10.1016/j.amc.2018.12.046 |
[20] | Q. Liu, F. Zeng, C. Li, Finite difference method for time-space-fractional Schrödinger equation, Int. J. Comput. Math., 92 (2015), 1439–1451. https://doi.org/10.1080/00207160.2014.945440 doi: 10.1080/00207160.2014.945440 |
[21] | X. Cheng, H. Qin, J. Zhang, Convergence of an energy-conserving scheme for nonlinear space fractional Schrödinger equations with wave operator, J. Comput. Appl. Math., 400 (2022), 113762. https://doi.org/10.1016/j.cam.2021.113762 doi: 10.1016/j.cam.2021.113762 |
[22] | X. Li, J. Wen, D. Li, Mass and energy-conserving difference schemes for nonlinear fractional Schrödinger equations, Appl. Math. Lett., 111 (2021), 106686. https://doi.org/10.1016/j.aml.2020.106686 doi: 10.1016/j.aml.2020.106686 |
[23] | W. Cao, D. Li, Z. Zhang, Unconditionally optimal convergence of an energy-preserving and linearly implicit scheme for nonlinear wave equations, Sci. China Math., 65 (2022), 1731–1748. https://doi.org/10.1007/s11425-020-1857-5 doi: 10.1007/s11425-020-1857-5 |
[24] | D. Wang, A. Xiao, W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272 (2014), 644–655. https://doi.org/10.1016/j.jcp.2014.04.047 doi: 10.1016/j.jcp.2014.04.047 |
[25] | D. Wang, A. Xiao, W. Yang, Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242 (2013), 670–681. https://doi.org/10.1016/j.jcp.2013.02.037 doi: 10.1016/j.jcp.2013.02.037 |
[26] | N. Norman, The Fourier transform method for normalizing intensities, Acta Cryst., 10 (1957), 370–373. https://doi.org/10.1107/S0365110X57001085 doi: 10.1107/S0365110X57001085 |
[27] | P. L. Butzer, S. Jansche, A direct approach to the Mellin transform, J.Fourier Anal. Appl., 3 (1997), 325–376. https://doi.org/10.1007/BF02649101 doi: 10.1007/BF02649101 |
[28] | E. Hairer, M. Hochbruck, A. Iserles, C. Lubich, Geometric numerical integration, Oberwolfach Rep., 3 (2006), 805–882. https://doi.org/10.4171/owr/2006/14 doi: 10.4171/owr/2006/14 |
[29] | I. Higueras, Monotonicity for Runge-Kutta methods: inner product norms, J. Sci. Comput., 24 (2005), 97–117. https://doi.org/10.1007/s10915-004-4789-1 doi: 10.1007/s10915-004-4789-1 |
[30] | D. Li, X. Li, Z. Zhang, Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications to PDEs, Math. Comput., 92 (2023), 117–146. |
[31] | D. I. Ketcheson, Relaxation Runge-Kutta methods: conservation and stability for inner-product norms, SIAM J. Numer. Anal., 57 (2019), 2850–2870. https://doi.org/10.1137/19M1263662 doi: 10.1137/19M1263662 |
[32] | D. Li, X. Li, Z. Zhang, Linearly implicit and high-order energy-preserving relaxation schemes for highly oscillatory Hamiltonian systems, J. Comput. Phys., 477 (2023), 111925. https://doi.org/10.1016/j.jcp.2023.111925 doi: 10.1016/j.jcp.2023.111925 |
[33] | D. Li, W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 65. https://doi.org/10.1007/s10915-020-01245-6 doi: 10.1007/s10915-020-01245-6 |
[34] | W. Cao, D. Li, Z. Zhang, Optimal superconvergence of energy conserving local discontinuous Galerkin methods for wave equations, Commun. Comput. Phys., 21 (2017), 211–236. https://doi.org/10.4208/cicp.120715.100516a doi: 10.4208/cicp.120715.100516a |
[35] | Z. Hao, Z. Sun, W. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281 (2015), 787–805. https://doi.org/10.1016/j.jcp.2014.10.053 doi: 10.1016/j.jcp.2014.10.053 |
[36] | P. Wang, C. Huang, An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation, J. Comput. Phys., 312 (2016), 31–49. https://doi.org/10.1016/j.jcp.2016.02.018 doi: 10.1016/j.jcp.2016.02.018 |
[37] | Y. Zhang, Z. Sun, T. Wang, Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numer. Methods Partial Differ. Equ., 29 (2013), 1487–1503. https://doi.org/10.1002/num.21763 doi: 10.1002/num.21763 |
[38] | Y. L. Zhou, Application of Discrete Functional Analysis to the Finite Difference Method, Inter, Beijing: Ac ad. Publishers, 1990. |
[39] | S. Vong, P. Lyu, X. Chen, S Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algorithms, 72 (2016), 195–210. https://doi.org/10.1007/s11075-015-0041-3 doi: 10.1007/s11075-015-0041-3 |
[40] | A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer Science & Business Media, 2008. |
[41] | X. M. Gu, H. W. Sun, Y. Zhang, Y. L. Zhao, Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian, Math. Methods Appl. Sci., 44 (2021), 441–463. https://doi.org/10.1002/mma.6746 doi: 10.1002/mma.6746 |
[42] | M. Li, X. M. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044 |