\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A novel road dynamic simulation approach for vehicle driveline experiments

  • * Corresponding author: Wen-Li Li

    * Corresponding author: Wen-Li Li 
Abstract / Introduction Full Text(HTML) Figure(19) / Table(2) Related Papers Cited by
  • A dynamic simulation approach for performing emulation experiments on vehicle driveline test bench is discussed in this paper. In order to reduce costs and shorten new vehicle development cycle time, vehicle simulation on the driveline test bench is an attractive alternative at the development phase to reduce the quantity of proto vehicles. This test method moves the test site from the road to the bench without the need for real chassis parts. Dynamic emulation of mechanical loads is a Hardware-in-the-loop (HIL) procedure, which can be used as a supplement of the conventional simulations in testing of the operation of algorithms without the need for the prototypes. The combustion engine is replaced by a electric drive motor, which replicates the torque and speed signature of an actual engine, The road load resistance of the vehicle on a real test road is accurately simulated on load dynamometer motor. On the basis of analyzing and comparing the advantages and disadvantages of the inverse dynamics model and the forward model based on speed closed loop control method, in view of the high order, nonlinear and multi variable characteristics of test bench system, a load simulation method based on speed adaptive predictive control is presented. It avoids the complex algorithm of closed loop speed compensation, and reduces the influence of inaccurate model parameters on the control precision of the simulation system. The vehicle start and dynamic shift process were simulated on the test bench.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Mechanical Load Dynamic Emulation Control System

    Figure 2.  Inverse Dynamic Model

    Figure 3.  Speed Closed Loop Control Algorithm

    Figure 4.  Speed closed loop control with feed-forward compensation

    Figure 5.  Speed Closed-loop Control with Feed-forward Compensation

    Figure 6.  Speed adaptive predictive control

    Figure 7.  Schematic diagram of vehicle acceleration resistance

    Figure 8.  Control model of speed adaptive predictive control

    Figure 9.  The characteristic curves of drive motor and engine

    Figure 10.  The characteristic curves of load motor

    Figure 11.  Simulation range of electrical inertia on the platform system

    Figure 12.  Acceleration inertia simulation curve

    Figure 13.  The setup of vehicle driveline test bench

    Figure 14.  The clutch control unit of the test bench

    Figure 15.  The starting characteristics curves of simulated vehicle

    Figure 16.  The shift control unit of the test bench

    Figure 17.  Dynamic simulation curves of upshift

    Figure 18.  Dynamic simulation curves of downshift

    Figure 19.  Dynamic simulation curves of continuous shifting process

    Table 1.  The technical data of drive motor

    Power
    (Kw)
    Frequency
    (Hz)
    Torque
    $N\cdot m$
    Speed
    (r/min)
    Moment of inertia
    (kg$\cdot$ m$^2$)
    235.6 250 360 5000 0.042
     | Show Table
    DownLoad: CSV

    Table 2.  The technical data of load motor

    Power
    (Kw)
    Frequency
    (Hz)
    Torque
    ($N\cdot m$)
    Speed
    (r/min)
    Moment of inertia
    (kg$\cdot$ m$^2$)
    310 27.2 3701 800 6.3
     | Show Table
    DownLoad: CSV
  • [1] R. Ahlawat, S. Jiang and D. Medonza, et al., Engine torque pulse and wheel slip emulation for transmission-in-the-loop experiments, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Montréal, Canada, 2010, 688-695.
    [2] Z. H. AkpolatG. M. Asher and J. C. Clare, A practical approach to the design of robust speed controllers for machine drives, IEEE Trans. on Industrial Electronics, 47 (2000), 315-324. 
    [3] Z. H. AkpolatG. M. Asher and J. C. Clare, Dynamic emulation of mechanical loads using a vector controlled induction motor-generator set, IEEE Trans. on Industrial Electronics, 46 (1999), 370-379. 
    [4] J. Arellano-PadillaG. Asher and M. Sumner, Control of an ac-dynamometer for dynamic emulation of mechanical loads with stiff and flexible shafts, IEEE Transactions on Industrial Electronics, 53 (2006), 1250-1260. 
    [5] M. Corbett, P. Lamm and J. McNichols, et. al., Effects of transient power extraction on an integratated hardware-in-the-loop aircraft/propulsion/power system, Power Systems Conference. Washington, SAE Internatinal, 2008, Paper No. 2008-01-2926.
    [6] Z. Hakan AkpolatG. M. Ashen and J. C. Clare, Dynamic emulation of mechanical Loads using a vector-controlled induction motor-generator set, IEEE Transactions on Industrial Lectornics, 46 (1999), 370-379. 
    [7] Z. Hakan AkpolatG. M. Ashen and J. C. Clare, Experimental dynamometer emulation of nonlinear mechanical loads, Industry Applications Society Annual Meeting. St. Louis. IEEE transactions on industrial Applications, 35 (1999), 1367-1373. 
    [8] Z. Hakan Akpolat, G. Asher and J. Clare, Experimental dynamometer emulation of nonlinear mechanical loads, The 1998 IEEE Industry Applications Conference. St. Louis, 1998, 532-539.
    [9] C. Hewson, G. Asher and M. Sumner, Dynamometer control for emulation of mechanical loads, The 1998 IEEE Industry Applications Conference. St. Louis, 1998, 1511-1518.
    [10] S. Jiang, M. H. Smith and J. Kitchen, et al., Development of an engine-in-the-loop vehicle simulation system in engine dynamometer test cell, SAE 2009 World Congress & Amp, Exhibition, United States, SAE International 2009, Paper No 2009-01-1039.
    [11] S. Kaatz, T. Abe and W. Vanhaaften, et al., The ford motor company transmission NVH test cell, Noise & Vibration Conference and Exhibition. Michigan. SAE Internatinal, 2003, Paper No. 2003-01-1681.
    [12] Z.-J. Liu, J.-J. Hu and S. Wen, et al., Design of data acquisition and communication system for AMT comprehensive performance testbench, Journal of Chongqing University: Natural Science Edition, 32 (2009), 775-781.
    [13] N. Newberger, T. A. Nevius and P. Lasota, et al., Virtual engine dynamometer in service life testing of transmissions: A comparison between real engine and electric dynamometers as prime movers in validation test rigs, Extending Dynamometer Performance for Virtual Engine Simulation. International Congress and Exposition, SAE Internatinal, 2010, Paper No. 2010-01-0919.
    [14] R. W. NewtonR. E. Betz and H. B. Penfold, Emulating dynamics load characteristics using a dynamic dynamometer, Proc. Int. Conf. Power Electron. and Drive Syst., 1 (1995), 465-470. 
    [15] M. Rodic, K. Jezernik and M. Trlep, Use of dynamic emulation of mechanical loads in the design of adjustable speed applications, Advanced Motion Control, AMC, Kawasaki, 2004, 677-682.
    [16] M. Rodi$\check{c}$K. Jezernik and M. Trlep, Dynamic emulation of mechanical loads: And advanced approach, IEE Proc., Electr. Power Appl., 153 (2006), 159-166. 
    [17] M. Rodi$\check{c}$K. Jezernik and M. Trlep, A feedforward approach to the dynamic emulation of mechanical loads, Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference(PESC'04), (2004), 4595-4601. 
    [18] W.-J. WangW.-G. Zhang and X. Li, Inertia electrical emulation and angular acceleration estimation for transmission test rig, Journal of Southeast University(Natural Science Edition), 42 (2012), 62-66. 
  • 加载中
Open Access Under a Creative Commons license

Figures(19)

Tables(2)

SHARE

Article Metrics

HTML views(2301) PDF downloads(282) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return