Extending Perfect Matchings to Hamiltonian Cycles in Line Graphs
Abstract
A graph admitting a perfect matching has the Perfect-Matching-Hamiltonian property (for short the PMH-property) if each of its perfect matchings can be extended to a Hamiltonian cycle. In this paper we establish some sufficient conditions for a graph $G$ in order to guarantee that its line graph $L(G)$ has the PMH-property. In particular, we prove that this happens when $G$ is (i) a Hamiltonian graph with maximum degree at most $3$, (ii) a complete graph, or (iii) an arbitrarily traceable graph. Further related questions and open problems are proposed along the paper.