Inhomogeneous Partition Regularity

  • Imre Leader
  • Paul A. Russell

Abstract

We say that the system of equations $Ax = b$, where $A$ is an integer matrix and $b$ is a (non-zero) integer vector, is partition regular if whenever the integers are finitely coloured there is a monochromatic vector $x$ with $Ax = b.$ Rado proved that the system $Ax = b$ is partition regular if and only if it has a constant solution.

Byszewski and Krawczyk asked if this remains true when the integers are replaced by a general (commutative) ring $R$. Our aim in this note is to answer this question in the affirmative. The main ingredient is a new 'direct' proof of Rado’s result.

Published
2020-06-26
Article Number
P2.57