Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature
Abstract
:1. Introduction
2. Vehicle Data Collection
3. Results
3.1. Trend of Driving Range for Plug-In Hybrid Electric Vehicles (PHEVs) in Charge-Depleting (CD) Mode
3.2. Trend of Fuel Economy
3.3. The effect of Ambient Temperature and Solar Load on Fuel Economy
3.4. Energy Recovery by Regenerative Braking
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zukowski, D. No Combustion-Engine Cars Sold in Germany after 2030, Parliament Says. 2016. Available online: https://www.ecowatch.com/germany-bans-combustion-engine-cars-2037788435.html (accessed on 15 August 2019).
- Coren, M.J. Nine Countries Say They’ll Ban Internal Combustion Engines. So far, It’s Just Words. 2018. Available online: https://qz.com/1341155/nine-countries-say-they-will-ban-internal-combustion-engines-none-have-a-law-to-do-so/ (accessed on 15 August 2019).
- Siler, S.; Stoklosa, A. Every Plug-in-Hybrid Vehicle Available in America Today. 2018. Available online: https://www.caranddriver.com/features/g15377500/plug-in-hybrid-car-suv-vehicles/ (accessed on 15 August 2019).
- Jung, H.; Silva, R.; Han, M. Scaling Trends of Electric Vehicle Performance: Driving Range, Fuel Economy, Peak Power Output, and Temperature Effect. World Electr. Veh. J. 2018, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- An, F.; Santini, D.J. Mass impacts on fuel economies of conventional vs. hybrid electric vehicles. SAE Trans. 2004, 113, 258–276. [Google Scholar]
- Pagerit, S.; Sharer, P.; Rousseau, A. Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Wohlecker, R.; Johannaber, M.; Espig, M. Determination of Weight Elasticity of Fuel Economy for Ice, Hybrid and Fuel Cell Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Brooker, A.D.; Ward, J.; Wang, L. Light Weighting Impacts on Fuel Economy, Cost, and Component Losses; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Timmers, V.R.; Achten, P.A. Non-exhaust PM Emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Kasseris, E.; Heywood, J. Comparative analysis of automotive powertrain choices for the next 25 years. SAE Trans. 2007, 116, 16–19. [Google Scholar]
- Li, C.; Brewer, E.; Pham, L.; Jung, H. Reducing Mobile Air Conditioner (MAC) Power Consumption Using Active Cabin-Air-Recirculation in a Plug-In Hybrid Electric Vehicle (PHEV). World Electr. Veh. J. 2018, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Fuel Economy. Fuel Economy in Cold Weather. Available online: https://www.fueleconomy.gov/feg/coldweather.shtml (accessed on 15 January 2020).
- Gao, Y.; Chen, L.; Ehsani, M. Investigation of the Effectiveness of Regenerative Braking for EV and HEV. SAE Trans. 1999, 3184–3190. [Google Scholar] [CrossRef]
- Helmbrecht, M.; Olaverri-Monreal, C.; Bengler, K.; Vilimek, R.; Keinath, A. How electric vehicles affect driving behavioral patterns. IEEE Intell. Transp. Syst. Mag. 2014, 6, 22–32. [Google Scholar] [CrossRef]
- Barth, M.; Boriboonsomsin, K. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transp. Res. Part D Transp. Environ. 2009, 14, 400–410. [Google Scholar] [CrossRef]
Model | Blended CD | CS_City (MPGe) | CS_Hwy (MPGe) | CD_City (MPGe) | CD_Hwy (MPGe) | Range (miles) | Battery Type | Weight (kg) | Batttery Capacity (kWh) | Rated Motor Power (kW) | Max Engine Power (kW) | HR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 Audi A3 e-tron (PHEV) | Y | 34 | 39 | 81 | 86 | 16 | Li Ion | 1758 | 8.8 | 80 | 152 | 0.53 |
2018 BMW 330e (PHEV) | Y | 28 | 34 | 66 | 78 | 14 | Li Ion | 1928 | 7.6 | 83 | 184 | 0.45 |
2018 BMW 530e (PHEV) | Y | 27 | 31 | 70 | 75 | 16 | Li Ion | 2041 | 9.2 | 83 | 185 | 0.45 |
2018 BMW 530e xDrive (PHEV) | Y | 27 | 31 | 66 | 68 | 15 | Li Ion | 2155 | 9.2 | 83 | 185 | 0.45 |
2018 BMW 740e xDrive (PHEV) | Y | 25 | 29 | 62 | 68 | 14 | Li Ion | 2268 | 9.2 | 83 | 190 | 0.44 |
2018 BMW I3 (94Ah) with Range Extender (PHEV) | N | 36 | 33 | 117 | 101 | 97 | Li Ion | 1588 | 33 | 125 | 25 | 5.08 |
2018 BMW I3s (94Ah) with Range Extender (PHEV) | N | 36 | 33 | 117 | 101 | 97 | Li Ion | 1644 | 33.2 | 125 | 25 | 5.08 |
2018 BMW X5 xDrive40e (PHEV) | Y | 23 | 25 | 55 | 57 | 14 | Li Ion | 2495 | 9 | 83 | 180 | 0.46 |
2018 Cadillac CT6 Plug-In | Y | 23 | 29 | 56 | 71 | 31 | Li Ion | 2155 | 18.4 | 75 | 198 | 0.38 |
2018 Chevrolet Volt | N | 43 | 42 | 113 | 99 | 53 | Li Ion | 1758 | 18.4 | 111 | 75 | 1.48 |
2018 Chrysler Pacifica Hybrid (PHEV) | Y | 32 | 33 | 89 | 78 | 33 | Li Ion | 2381 | 16 | 85 | 195 | 0.44 |
2018 Ford Fusion Energi Plug-in Hybrid FWD | Y | 43 | 41 | 102 | 91 | 21 | Li Ion | 1701 | 7.6 | 88 | 105 | 0.84 |
2018 Honda Clarity PHEV | Y | 44 | 40 | 117 | 102 | 48 | Li Ion | 1928 | 17 | 135 | 77 | 1.76 |
2018 Hyundai Ioniq Plug-in Hybrid | Y | 53 | 52 | 123 | 114 | 29 | Li Ion | 1644 | 8.9 | 32 | 78 | 0.41 |
2018 Hyundai Sonata Plug-in Hybrid | Y | 37 | 42 | 99 | 100 | 28 | Li Ion | 1814 | 9.8 | 50 | 115 | 0.44 |
2018 Karma Automotive Revero (PHEV) | N | 20 | 21 | 59 | 61 | 37 | Li Ion | 2495 | 21.4 | 150 | 175 | 1.71 |
2018 Kia Optima Plug-in Hybrid | Y | 38 | 43 | 103 | 104 | 29 | Li Ion | 1814 | 9.8 | 37 | 115 | 0.32 |
2018 Kia Niro Plug-in Hybrid | Y | 48 | 45 | 110 | 99 | 26 | Li Ion | 1701 | 8.9 | 32 | 78 | 0.41 |
2018 Mercedes C 350e (PHEV) | Y | 29 | 32 | 45 | 61 | 9 | Li Ion | 2041 | 6.4 | 60 | 155 | 0.38 |
2018 Mercedes GLC 350e 4MATIC (PHEV) | Y | 24 | 27 | 55 | 57 | 10 | Li Ion | 2268 | 8.7 | 85 | 155 | 0.55 |
2018 Mercedes GLE 550e 4MATIC (PHEV) | Y | 20 | 23 | 38 | 50 | 10 | Li Ion | 2722 | 8.8 | 85 | 246 | 0.35 |
2018 BMW Mini Cooper SE Countryman ALL4 (PHEV) | Y | 28 | 27 | 63 | 66 | 12 | Li Ion | 1928 | 8 | 65 | 100 | 0.65 |
2018 Mitsubishi Outlander PHEV | Y | 25 | 26 | 78 | 70 | 22 | Li Ion | 2155 | 12 | 60 | 87 | 0.68 |
2018 Porsche Cayenne S e-Hybrid (PHEV) | N | 21 | 24 | 47 | 46 | 14 | Li Ion | 2495 | 10.8 | 71 | 249 | 0.29 |
2018 Porsche Panamera 4 e-Hybrid (PHEV) | N | 20 | 25 | 40 | 57 | 16 | Li Ion | 2155 | 14 | 101 | 246 | 0.41 |
2018 Porsche Panamera 4 e-Hybrid Executive (PHEV) | N | 20 | 25 | 40 | 57 | 16 | Li Ion | 2155 | 14 | 101 | 246 | 0.41 |
2018 Porsche Panamera 4 e-Hybrid Sport Turismo (PHEV) | N | 20 | 25 | 40 | 57 | 16 | Li Ion | 2495 | 14 | 101 | 246 | 0.41 |
2018 Porsche Panamera Turbo S e-Hybrid (PHEV) | N | 19 | 23 | 48 | 51 | 14 | Li Ion | 2268 | 14 | 101 | 410 | 0.25 |
2018 Porsche Panamera Turbo S e-Hybrid Executive (PHEV) | N | 19 | 23 | 48 | 51 | 14 | Li Ion | 2268 | 14 | 101 | 410 | 0.25 |
2018 Porsche Panamera Turbo S e-Hybrid Sport Turismo (PHEV) | N | 19 | 23 | 48 | 51 | 14 | Li Ion | 2722 | 14 | 101 | 410 | 0.25 |
2018 Toyota Prius Prime (PHEV) | Y | 55 | 53 | 145 | 121 | 25 | Li Ion | 1644 | 8.8 | 53 | 71 | 0.75 |
2018 Volvo S90 AWD (PHEV) | Y | 26 | 33 | 70 | 72 | 21 | Li Ion | 2268 | 10.4 | 65 | 234 | 0.28 |
2018 Volvo XC60 AWD (PHEV) | Y | 26 | 28 | 60 | 58 | 18 | Li Ion | 2041 | 10.4 | 65 | 234 | 0.28 |
2018 Volvo XC90 AWD (PHEV) | Y | 26 | 30 | 63 | 61 | 19 | Li Ion | 2268 | 10.4 | 65 | 234 | 0.28 |
2019 BMW 530e (PHEV) | Y | 27 | 30 | 70 | 75 | 16 | Li Ion | 2041 | 9.2 | 83 | 134 | 0.62 |
2019 BMW 530e xDrive (PHEV) | Y | 27 | 31 | 66 | 68 | 15 | Li Ion | 2155 | 9.2 | 83 | 134 | 0.62 |
2019 BMW 740e xDrive (PHEV) | Y | 25 | 29 | 62 | 68 | 14 | Li Ion | 2041 | 9.2 | 83 | 209 | 0.40 |
2019 BMW I3 (120Ah) with Range Extender (PHEV) | N | 30 | 31 | 107 | 93 | 126 | Li Ion | 1486 | 42.2 | 125 | 25 | 5.08 |
2019 BMW I3s (120Ah) with Range Extender (PHEV) | N | 30 | 31 | 107 | 93 | 126 | Li Ion | 1644 | 42.2 | 135 | 25 | 5.48 |
2019 BMW I8 Coupe (PHEV) | Y | 26 | 29 | 68 | 70 | 18 | Li Ion | 1588 | 11.6 | 105 | 170 | 0.62 |
2019 BMW I8 Roadster (PHEV) | Y | 26 | 29 | 68 | 70 | 18 | Li Ion | 1814 | 11.6 | 105 | 170 | 0.62 |
2019 Chevrolet Volt | N | 43 | 42 | 113 | 98 | 53 | Li Ion | 1758 | 18.4 | 111 | 75 | 1.48 |
2019 Chrysler Pacifica Hybrid (PHEV) | Y | 29 | 30 | 87 | 76 | 32 | Li Ion | 2381 | 16 | 85 | 195 | 0.44 |
2019 Ford Fusion Energi Plug-in Hybrid FWD | Y | 43 | 40 | 109 | 97 | 26 | Li Ion | 1701 | 7.6 | 88 | 105 | 0.84 |
2019 Ford Fusion Special Service Vehicle PHEV | Y | 43 | 40 | 106 | 97 | 26 | Li Ion | 1928 | 9 | 88 | 105 | 0.84 |
2019 Honda Clarity PHEV | Y | 44 | 40 | 117 | 102 | 48 | Li Ion | 1928 | 25.5 | 135 | 77 | 1.76 |
2019 Hyundai Ioniq Plug-in Hybrid | Y | 53 | 52 | 123 | 114 | 29 | Li Ion | 1644 | 8.9 | 32 | 78 | 0.41 |
2019 Hyundai Sonata Plug-in Hybrid | Y | 37 | 42 | 99 | 100 | 28 | Li Ion | 1814 | 9.8 | 50 | 115 | 0.44 |
2019 Kia Niro Plug-in Hybrid | Y | 48 | 45 | 110 | 99 | 26 | Li Ion | 1701 | 8.9 | 45 | 78 | 0.58 |
2019 Kia Optima Plug-in Hybrid | Y | 38 | 43 | 103 | 104 | 29 | Li Ion | 1814 | 9.8 | 50 | 115 | 0.44 |
2019 BMW Mini Cooper SE Countryman ALL4 (PHEV) | Y | 28 | 27 | 63 | 66 | 12 | Li Ion | 1928 | 8 | 65 | 100 | 0.65 |
2019 Mercedes GLC 350e 4MATIC (PHEV) | Y | 24 | 27 | 55 | 57 | 10 | Li Ion | 2268 | 8.71 | 85 | 155 | 0.55 |
2019 Mitsubishi Outlander PHEV | Y | 25 | 26 | 78 | 73 | 22 | Li Ion | 2155 | 12 | 60 | 87 | 0.68 |
2019 Porsche Panamera 4 e-Hybrid (PHEV) | N | 21 | 24 | 48 | 54 | 14 | Li Ion | 2155 | 14.1 | 100 | 246 | 0.41 |
2019 Porsche Panamera 4 e-Hybrid Executive (PHEV) | N | 21 | 24 | 48 | 54 | 14 | Li Ion | 2155 | 14.1 | 100 | 246 | 0.41 |
2019 Porsche Panamera 4 e-Hybrid Sport Turismo (PHEV) | N | 21 | 24 | 48 | 54 | 14 | Li Ion | 2495 | 14.1 | 100 | 246 | 0.41 |
2019 Porsche Panamera Turbo S e-Hybrid (PHEV) | N | 19 | 22 | 46 | 51 | 14 | Li Ion | 2268 | 14.1 | 100 | 410 | 0.24 |
2019 Porsche Panamera Turbo S e-Hybrid Executive (PHEV) | N | 19 | 22 | 46 | 51 | 14 | Li Ion | 2268 | 14.1 | 100 | 410 | 0.24 |
2019 Porsche Panamera Turbo S e-Hybrid Sport Turismo (PHEV) | N | 19 | 22 | 46 | 51 | 14 | Li Ion | 2722 | 14.1 | 100 | 410 | 0.24 |
2019 Subaru Crosstrek Hybrid AWD (PHEV) | Y | 36 | 35 | 99 | 80 | 17 | Li Ion | 1588 | 8.8 | 78 | 102 | 0.76 |
2019 Toyota Prius Prime (PHEV) | Y | 55 | 53 | 145 | 121 | 25 | Li Ion | 1644 | 8.8 | 53 | 71 | 0.75 |
2019 Volvo S60 AWD (PHEV) | Y | 29 | 34 | 78 | 78 | 22 | Li Ion | 1928 | 10.4 | 65 | 234 | 0.28 |
2019 Volvo S90 AWD (PHEV) | Y | 26 | 33 | 73 | 76 | 21 | Li Ion | 2268 | 10.4 | 65 | 234 | 0.28 |
2019 Volvo XC60 AWD (PHEV) | Y | 25 | 28 | 62 | 60 | 17 | Li Ion | 2041 | 10.4 | 65 | 234 | 0.28 |
2019 Volvo XC90 AWD (PHEV) | Y | 24 | 27 | 62 | 59 | 17 | Li Ion | 2268 | 10.4 | 65 | 234 | 0.28 |
Model Year | Type | Make | Model |
---|---|---|---|
2013 | PHEV | Toyota | Prius Plug-in |
2013 | PHEV | Ford | Fusion Energi |
2013 | PHEV | Ford | C-Max Energi |
2013 | HEV | Volkswagen | Jetta Hybrid SE |
2013 | HEV | Chevrolet | Malibu Eco |
2013 | HEV | Ford | C-Max Hybrid |
2013 | HEV | Honda | Civic Hybrid |
2015 | HEV | Honda | Accord Hybrid |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H. Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature. World Electr. Veh. J. 2020, 11, 31. https://doi.org/10.3390/wevj11020031
Jung H. Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature. World Electric Vehicle Journal. 2020; 11(2):31. https://doi.org/10.3390/wevj11020031
Chicago/Turabian StyleJung, Heejung. 2020. "Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature" World Electric Vehicle Journal 11, no. 2: 31. https://doi.org/10.3390/wevj11020031