The Effect of pH on Aniline Removal from Water Using Hydrophobic and Ion-Exchange Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Analytical Tools
2.2. Hydrophobic and Ion-Exchange Membranes
2.3. Two-Compartment Diffusion Cell Experiments
2.4. Desorption Experiments
2.5. Electrodialysis Experiments
3. Results and Discussion
3.1. The Diffusion of Aniline Through POMS and PDMS Hydrophobic Membranes
3.2. The Influence of pH on the Transport of Aniline Through IEMs
3.2.1. The Diffusion of Aniline Through IEMs at Neutral pH Conditions in the Feed and Receiving Solutions
3.2.2. The Impact of Varying pH at the Feed and Receiving Solutions on Aniline Transport
3.3. The Desorption of Aniline from IEMs and Hydrophobic POMS and PDMS Membranes
3.4. The Removal of Aniline Using Electrodialysis
3.4.1. Current-Voltage Curve
3.4.2. Water Transfer
3.5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEM | Anion-exchange membrane |
AOP | Advanced oxidation process |
CEM | Cation-exchange membrane |
DBD | Dielectric barrier discharges |
ED | Electrodialysis |
IEM | Ion-exchange membrane |
MARS | Membrane aromatic recovery system |
PDMS | Polydimethylsiloxane |
PMS | Peroxymonosulfate |
POMS | Polyoctylmethylsiloxane |
Appendix A
Properties | AEM I | CEM I | AEM II | CEM II |
---|---|---|---|---|
Thickness (μm) | 75.9 | 97.7 | 129.4 | 121.1 |
Permselectivity (%) | 92 | 95 | 95 | 96 |
Water permeation (mL·bar−1·m−2·h−1) | 6 | 10 | 3 | 3.5 |
Burst strength wet (k·Pa) | 2.4 | 2.7 | 5 | 4.7 |
Electrical resistance in 2 M NaCl (Ω·cm2) | 0.8 | 1.3 | 3.5 | 6.1 |
Ion-exchange capacity (meq/g) | 1.5 | 1.4 | 0.9 | 1.1 |
pH stability | 2–10 | 4–12 | 2–10 | 4–12 |
References
- Fu, H.-Y.; Zhang, Z.-B.; Chai, T.; Huang, G.-H.; Yu, S.-J.; Liu, Z.; Gao, P.-F. Study of the removal of aniline from wastewater via MEUF using mixed surfactants. Water 2017, 9, 365. [Google Scholar] [CrossRef]
- Kortenkamp, A.; Faust, M. Regulate to reduce chemical mixture risk. Science 2018, 361, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Doraghi, F.; Kalooei, Y.M.; Darban, N.M.Z.; Larijani, B.; Mahdavi, M. Para-Selective C-H Functionalization of Anilines: A Review. J. Organomet. Chem. 2024, 1019, 123313. [Google Scholar] [CrossRef]
- Choi, G.; Kuiper, J.R.; Bennett, D.H.; Barrett, E.S.; Bastain, T.M.; Breton, C.V.; Chinthakindi, S.; Dunlop, A.L.; Farzan, S.F.; Herbstman, J.B.; et al. Exposure to melamine and its derivatives and aromatic amines among pregnant women in the United States: The ECHO Program. Chemosphere 2022, 307, 135599. [Google Scholar] [CrossRef]
- Li, X.; Jin, X.; Zhao, N.; Angelidaki, I.; Zhang, Y. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system. Water Res. 2017, 119, 67–72. [Google Scholar] [CrossRef]
- Chen, H.; Sun, C.; Liu, R.; Yuan, M.; Mao, Z.; Wang, Q.; Zhou, H.; Cheng, H.; Zhan, W.; Wang, Y. Enrichment and domestication of a microbial consortium for degrading aniline. J. Water Process Eng. 2021, 42, 102108. [Google Scholar] [CrossRef]
- ATSDR. Medical Management Guidelines for Aniline. 2007. Available online: https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=448&toxid=79#bookmark01 (accessed on 6 March 2024).
- Szczepanik, B.; Słomkiewicz, P. Photodegradation of aniline in water in the presence of chemically activated halloysite. Appl. Clay Sci. 2016, 124, 31–38. [Google Scholar] [CrossRef]
- Hebrant, M. Hawley’s Condensed Chemical Dictionary. By MD Larrañaga, RJ Lewis Sr & RA Lewis. Wiley, 2016. Hardback, Pp. XIII+ 1547. Price GBP 96.78. ISBN 9781118135150. Acta Crystallogr. Sect. C Struct. Chem. 2016, 72, 765. [Google Scholar]
- IMARC Group. Aniline Market Report by Technology (Vapor Phase Process, Liquid Phase Process), Application (Methylenediphenyldiisocyanate (MDI) and Others), End-Use Industry (Insulation, Rubber Products, Consumer Goods, Transportation, Packaging, Agriculture and Others) and Region 2024–2032. 2023. Available online: https://www.imarcgroup.com/report/en/aniline-market (accessed on 11 October 2024).
- Chen, Y.; Zhang, J.; Zhu, X.; Wang, Y.; Chen, J.; Sui, B.; Teng, H.H. Unraveling the complexities of Cd-aniline composite pollution: Insights from standalone and joint toxicity assessments in a bacterial community. Ecotoxicol. Environ. Saf. 2023, 265, 115509. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Shi, J.; Gao, H. Remediation of aniline-contaminated groundwater by activated persulfate and its environmental risks. Chem. Ind. Eng. Prog. 2022, 41, 2753. [Google Scholar]
- Sheng, J.; Xu, J.; Qin, B.; Jiang, H. Three-dimensional flower-like magnetic CoFe-LDHs/CoFe2O4 composites activating peroxymonosulfate for high efficient degradation of aniline. J. Environ. Manag. 2022, 310, 114693. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.-Y.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO). Water Res. 2016, 91, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yao, J.; Cao, Y.; Pang, W.; Knudsen, T.Š.; Liu, J. Degradation of aniline via microbial treated post Fe (II) or Co (II)/PMS advanced oxidation processes. Sep. Purif. Technol. 2025, 359, 130809. [Google Scholar] [CrossRef]
- Travis, A.S. Poisoned Groundwater and Contaminated Soil: The Tribulations and Trial of the First Major Manufacturer of Aniline Dyes in Basel. Environ. Hist. 1997, 2, 343–365. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Xue, G.; Liu, Y.; Chen, S.; Jia, C. A critical review of the aniline transformation fate in azo dye wastewater treatment. J. Clean. Prod. 2021, 321, 128971. [Google Scholar] [CrossRef]
- Basiri, H.; Nourmoradi, H.; Moghadam, F.M.; Moghadam, K.F.; Mohammadian, J.; Khaniabadi, Y.O. Removal of aniline as a health-toxic substance from polluted water by aloe vera waste-based activated carbon. Der Pharma Chem. 2015, 7, 149–155. [Google Scholar]
- Bose, R.S.; Dey, S.; Saha, S.; Ghosh, C.K.; Chaudhuri, M.G. Enhanced removal of dissolved aniline from water under combined system of nano zero-valent iron and Pseudomonas putida. Sustain. Water Resour. Manag. 2016, 2, 143–159. [Google Scholar] [CrossRef]
- Gürten, A.A.; Uçan, S.; Özler, M.A.; Ayar, A. Removal of aniline from aqueous solution by PVC-CDAE ligand-exchanger. J. Hazard. Mater. 2005, 120, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, M.; Kuramitz, H.; Tanaka, S. Electrochemical oxidation for low concentration of aniline in neutral pH medium: Application to the removal of aniline based on the electrochemical polymerization on a carbon FIBER. Environ. Sci. Technol. 2005, 39, 3805–3810. [Google Scholar] [CrossRef]
- Jiang, Y.; Shang, Y.; Zhou, J.; Yang, K.; Wang, H. Characterization and biodegradation potential of an aniline-degrading strain of Pseudomonas JA1 at low temperature. Desalination Water Treat. 2016, 57, 25011–25017. [Google Scholar] [CrossRef]
- Li, X.; Shao, D.; Xu, H.; Lv, W.; Yan, W. Fabrication of a stable Ti/TiOxHy/Sb− SnO2 anode for aniline degradation in different electrolytes. Chem. Eng. J. 2016, 285, 1–10. [Google Scholar] [CrossRef]
- Haixia, W.; Zhi, F.; Yanhua, X. Degradation of aniline wastewater using dielectric barrier discharges at atmospheric pressure. Plasma Sci. Technol. 2015, 17, 228. [Google Scholar]
- Rayaroth, M.P.; Boczkaj, G.; Aubry, O.; Aravind, U.K.; Aravindakumar, C.T. Advanced oxidation processes for degradation of water pollutants—Ambivalent impact of carbonate species: A review. Water 2023, 15, 1615. [Google Scholar] [CrossRef]
- Uman, A.E.; Bair, R.A.; Yeh, D.H. Direct membrane filtration of wastewater: A comparison between real and synthetic Wastewater. Water 2024, 16, 405. [Google Scholar] [CrossRef]
- Men, Y.; Li, Z.; Zhu, L.; Wang, X.; Cheng, S.; Lyu, Y. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. Sci. Total Environ. 2023, 869, 161775. [Google Scholar] [CrossRef]
- Sugiyama, T.; Ito, Y.; Hafuka, A.; Kimura, K. Efficient direct membrane filtration (DMF) of municipal wastewater for carbon recovery: Application of a simple pretreatment and selection of an appropriate membrane pore size. Water Res. 2022, 221, 118810. [Google Scholar] [CrossRef]
- Ferreira, F.C.; Han, S.; Livingston, A.G. Recovery of aniline from aqueous solution using the membrane aromatic recovery system (MARS). Ind. Eng. Chem. Res. 2002, 41, 2766–2774. [Google Scholar] [CrossRef]
- Han, S.; Ferreira, F.C.; Livingston, A. Membrane aromatic recovery system (MARS)—A new membrane process for the recovery of phenols from wastewaters. J. Membr. Sci. 2001, 188, 219–233. [Google Scholar] [CrossRef]
- Sawai, J.; Ito, N.; Minami, T.; Kikuchi, M. Separation of low volatile organic compounds, phenol and aniline derivatives, from aqueous solutions using silicone rubber membrane. J. Membr. Sci. 2005, 252, 1–7. [Google Scholar] [CrossRef]
- Park, J.-S.; Choi, J.-H.; Woo, J.-J.; Moon, S.-H. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci. 2006, 300, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Xu, T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, X.-L.; Li-Xin, Y. Process simulation of desalination by electrodialysis of an aqueous solution containing a neutral solute. Desalination 2005, 172, 157–172. [Google Scholar] [CrossRef]
- Vanoppen, M.; Stoffels, G.; Ma, L.; De Meyer, E.; Schoutteten, K.; Vanhaecke, L.; Verliefde, A. Separation of organics and salts with ion-exchange membranes: Effect of matrix and organics. In Proceedings of the 2017 Membrane Technology Conference & Exposition, Long Beach, CA, USA, 13–17 February 2017. [Google Scholar]
- Ma, L.; Roman, M.; Alhadidi, A.; Jia, M.; Martini, F.; Xue, Y.; Verliefde, A.; Gutierrez, L.; Cornelissen, E. Fate of organic micropollutants during brackish water desalination for drinking water production in decentralized capacitive electrodialysis. Water Res. 2023, 245, 120625. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gutierrez, L.; Vanoppen, M.; Lorenz, D.N.; Aubry, C.; Verliefde, A. Transport of uncharged organics in ion-exchange membranes: Experimental validation of the solution-diffusion model. J. Membr. Sci. 2018, 564, 773–781. [Google Scholar] [CrossRef]
- Ma, L.; Gutierrez, L.; Verbeke, R.; D’Haese, A.; Waqas, M.; Dickmann, M.; Helm, R.; Vankelecom, I.; Verliefde, A.; Cornelissen, E. Transport of organic solutes in ion-exchange membranes: Mechanisms and influence of solvent ionic composition. Water Res. 2021, 190, 116756. [Google Scholar] [CrossRef]
- Vanoppen, M.; Bakelants, A.F.; Gaublomme, D.; Schoutteten, K.V.; Bussche, J.V.; Vanhaecke, L.; Verliefde, A.R. Properties governing the transport of trace organic contaminants through Ion-exchange membranes. Environ. Sci. Technol. 2015, 49, 489–497. [Google Scholar] [CrossRef]
- Schnackenberg, L.K.; Beger, R.D. Whole-Molecule Calculation of Log P Based on Molar Volume, Hydrogen Bonds, and Simulated 13C NMR Spectra. J. Chem. Inf. Model. 2005, 45, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhu, X.; Liu, W.; Sun, W.; Zhang, W.; Liu, J. Removal of aniline from wastewater using hollow fiber renewal liquid membrane. Chin. J. Chem. Eng. 2014, 22, 1187–1192. [Google Scholar] [CrossRef]
- Hu, L.; Cheng, J.; Li, Y.; Liu, J.; Zhou, J.; Cen, K. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes. Appl. Surf. Sci. 2017, 413, 27–34. [Google Scholar] [CrossRef]
- Borges, F.; Balmann, H.R.-D.; Guardani, R. Investigation of the mass transfer processes during the desalination of water containing phenol and sodium chloride by electrodialysis. J. Membr. Sci. 2008, 325, 130–138. [Google Scholar] [CrossRef]
- Roman, M.; Roman, P.; Verbeke, R.; Gutierrez, L.; Vanoppen, M.; Dickmann, M.; Egger, W.; Vankelecom, I.; Post, J.; Cornelissen, E.; et al. Non-steady diffusion and adsorption of organic micropollutants in ion-exchange membranes: Effect of the membrane thickness. iScience 2021, 24, 102095. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P.; Peinemann, K.-V. Membrane Technology: In the Chemical Industry; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Pärnamäe, R.; Mareev, S.; Nikonenko, V.; Melnikov, S.; Sheldeshov, N.; Zabolotskii, V.; Hamelers, H.V.M.; Tedesco, M. Bipolar membranes: A review on principles, latest developments, and applications. J. Membr. Sci. 2021, 617, 118538. [Google Scholar] [CrossRef]
- Roman, M.; Gutierrez, L.; Van Dijk, L.H.; Vanoppen, M.; Post, J.W.; Wols, B.A.; Cornelissen, E.R.; Verliefde, A.R. Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination. Sep. Purif. Technol. 2020, 252, 117487. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, H.J.; Moon, S.-H. Effects of electrolytes on the transport phenomena in a cation-exchange membrane. J. Colloid Interface Sci. 2001, 238, 188–195. [Google Scholar] [CrossRef]
- Kipling, J. Adsorption from Solutions of Non-Electrolytes; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Mikhaylin, S.; Bazinet, L. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Adv. Colloid Interface Sci. 2016, 229, 34–56. [Google Scholar] [CrossRef] [PubMed]
- Fedotova, M.V.; Kruchinin, S.E. The hydration of aniline and benzoic acid: Analysis of radial and spatial distribution functions. J. Mol. Liq. 2013, 179, 27–33. [Google Scholar] [CrossRef]
Experimental Condition | Membrane | pH | Duration (h) | |
---|---|---|---|---|
Feed | Receiving | |||
Diffusion Experiments | ||||
a | POMS | 3 | 10 | 500 |
b | PDMS | 3 | 10 | 500 |
c | AEM type I | 7 | 7 | 350 |
d | CEM type I | 7 | 7 | 350 |
e | AEM type I | 3 | 10 | 200 |
f | AEM type I | 10 | 3 | 200 |
g | CEM type I | 3 | 10 | 200 |
h | CEM type I | 10 | 3 | 200 |
i | AEM type II | 3 | 10 | 200 |
j | AEM type II | 10 | 3 | 200 |
k | CEM type II | 3 | 10 | 200 |
l | CEM type II | 10 | 3 | 200 |
Electrodialysis Experiments | ||||
m | AEM/CEM type I | 4 | 4 | 3 |
n | AEM/CEM type I | 4 | 10 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filian, K.; Mendez-Ruiz, J.I.; Garces, D.; Reveychuk, K.; Ma, L.; Melendez, J.R.; Díaz-Mendoza, C.; Cornelissen, E.; Valverde-Armas, P.E.; Gutierrez, L. The Effect of pH on Aniline Removal from Water Using Hydrophobic and Ion-Exchange Membranes. Water 2025, 17, 547. https://doi.org/10.3390/w17040547
Filian K, Mendez-Ruiz JI, Garces D, Reveychuk K, Ma L, Melendez JR, Díaz-Mendoza C, Cornelissen E, Valverde-Armas PE, Gutierrez L. The Effect of pH on Aniline Removal from Water Using Hydrophobic and Ion-Exchange Membranes. Water. 2025; 17(4):547. https://doi.org/10.3390/w17040547
Chicago/Turabian StyleFilian, Karla, Jonathan I. Mendez-Ruiz, Daniel Garces, Kateryna Reveychuk, Lingshan Ma, Jesus R. Melendez, Claudia Díaz-Mendoza, Emile Cornelissen, Priscila E. Valverde-Armas, and Leo Gutierrez. 2025. "The Effect of pH on Aniline Removal from Water Using Hydrophobic and Ion-Exchange Membranes" Water 17, no. 4: 547. https://doi.org/10.3390/w17040547
APA StyleFilian, K., Mendez-Ruiz, J. I., Garces, D., Reveychuk, K., Ma, L., Melendez, J. R., Díaz-Mendoza, C., Cornelissen, E., Valverde-Armas, P. E., & Gutierrez, L. (2025). The Effect of pH on Aniline Removal from Water Using Hydrophobic and Ion-Exchange Membranes. Water, 17(4), 547. https://doi.org/10.3390/w17040547