Dynamics of Barred Coast at Different Temporal Scales (by the Example of Vistula Spit in the Baltic Sea)
Abstract
:1. Introduction
- Two-dimensional straightened bars (parallel to the coastline);
- Three-dimensional bars (varying along the coast by 100–1000 m);
- Crescentic bars (located at relatively equal distances from the shore).
2. Study Site
3. Materials and Methods
3.1. Field Measurements
3.2. Wave Data
3.3. Calculation and Using Dean Number
- The Dean model represents the average slope of the coastal profile and is based on extensive empirical data;
- The coastal area under consideration does not experience a deficit of sediments.
3.4. Mathematical Modeling
4. Results
4.1. Observations of the Morphodynamics of the Coastal Zone Results
- An outer straightened bar (LBT—Longshore Bar-Through);
- The appearance of crescent-shaped outlines in plan view (RBB—Rhythmic Bar and Beach);
- The connection of the crescent-shaped bar ends to the shore, forming transverse bars and rip current channels (TBR—Transverse Bar and Rip);
- The bar’s transformation into an accumulative terrace adjacent to the shore (LTT—Ridge-Runnel or Low Tide Terrace).
4.2. Determination of the Predominant Factor Influencing the Morphodynamics of the Coast
4.3. Modeling of Storm Dynamics of the Coastal Profile Results
- Storm duration (, hr.);
- Maximum wave height during the storm (, m);
- Average value ().
5. Discussion of the Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson-Arnott, R. An Introduction to Coastal Processes and Geomorphology; Cambridge University Press: Cambridge, UK, 2010; pp. 202–210. [Google Scholar] [CrossRef]
- Leont’yev, I.O. Submarine bars on sandy coasts. Oceanology 2011, 51, 141–147. [Google Scholar] [CrossRef]
- Elgar, S.; Gallagher, E.; Guza, R. Nearshore sandbar migration. J. Geophys. Res. 2001, 106, 11623–11627. [Google Scholar] [CrossRef]
- Price, T.D.; Ruessink, B.G.; Castelle, B. Morphological coupling in multiple sandbar systems—A review. Earth Surf. Dyn. 2014, 2, 309–321. [Google Scholar] [CrossRef]
- Inman, D.L.; Elwany, H.S.; Jenkins, S.A. Shorerise and bar-berm profiles on ocean beaches. J. Geophys. Res. 1993, 98, 18181–18199. [Google Scholar] [CrossRef]
- Yates, M.L.; Guza, R.T.; O’Reilly, W.C.; Seymour, R.J. Overview of seasonal sand level changes on southern California beaches. Shore Beach 2009, 77, 39–46. Available online: https://api.semanticscholar.org/CorpusID:128161599 (accessed on 25 October 2024).
- Thornton, E.B.; Humiston, R.T.; Birkemeier, W. Bar/trough generation on a natural beach. J. Geophys. Res. 1996, 101, 12097–12110. [Google Scholar] [CrossRef]
- Katoh, K.; Yanagishima, S. Predictive Model for Daily Changes of Shoreline. In Proceedings of the Twenty-First International Conference on Coastal Engineering, Málaga, Spain, 20–25 June 1988; American Society of Civil Engineers: Hamburg, Germany, 1988; Chapter 93; pp. 1253–1264. [Google Scholar]
- Hansen, J.E.; Barnard, P.L. Sub-weekly to interannual variability of a high-energy shoreline. Coast. Eng. 2010, 57, 959–972. [Google Scholar] [CrossRef]
- Castelle, B.; Marieu, V.; Bujan, S.; Ferreira, S.; Parisot, J.P.; Capo, S.; Senechal, N.; Chouzenoux, T. Equilibrium shoreline modelling of a high-energy mesomacrotidal multiple-barred beach. Mar. Geol. 2014, 347, 85–94. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Two and three-dimensional shoreline behaviour at a MESO-MACROTIDAL barred beach. J. Coast. Conserv. 2017, 21, 381–392. [Google Scholar] [CrossRef]
- Shepard, F.P. Beach Cycles in Southern California; Technical Memorandum; Beach Erosion Board: Washington, DC, USA, 1950; Volume 15, 32p. [Google Scholar]
- Splinter, K.D.; Turner, I.L.; Davidson, M.A.; Barnard, P.; Castelle, B.; Oltman-Shay, J. A generalized equilibrium model for predicting daily to interannual shoreline response. J. Geophys. Res. Earth Surf. 2014, 119, 1936–1958. [Google Scholar] [CrossRef]
- Huguet, J.-R.; Castelle, B.; Marieu, V.; Morichon, D.; de Santiago, I. Shoreline-sandbar dynamics at a high-energy embayed and structurally-engineered sandy beach: Anglet, SW France. J. Coast. Res. 2016, 75, 393–397. [Google Scholar] [CrossRef]
- Goodfellow, B.W.; Stephenson, W.J. Beach morphodynamics in a strong-wind bay: A low-energy environment? Mar. Geol. 2005, 214, 101–116. [Google Scholar] [CrossRef]
- Kobelyanskaya, J.; Valentyna, P.; Bobykina, V.P.; Piekarek-Jankowska, H. Morphological and lithodynamic conditions in the marine coastal zone of the Vistula Spit (Gulf of Gdańsk, Baltic Sea). Oceanologia 2011, 53, 1027–1043. [Google Scholar] [CrossRef]
- Badiukova, E.N.; Varusienko, A.N.; Solovieva, G.D. The origin of the Vistula Spit in the Holocene. Mar. Geol. 1996, 36, 769–773. (In Russian) [Google Scholar]
- Bobykina, V.P.; Zhurahovskaya, P.M. Interannual Variations in the Composition of Beach Sediments of the Vistula Spit, Scientific Notes of the Russian Geographical society (Kaliningrad Branch) (CD-ROM version); Baltic Federal University: Kaliningrad, Russia, 2012; Volume 11, pp. 4B-1–4B-8. (In Russian) [Google Scholar]
- Badyukova, E.N.; Zhindarev, L.A.; Lukyanova, S.A.; Solovyeva, G.D. Large barrier-lagoon systems on the eastern and south-eastern Baltic sea coasts: Conditions of development. In Proceedings of the International Conference «Managing Risks to Coastal Regions and Communities in a Changing World» (EMECS’11 SeaCoasts XXVI), Sea Coasts XXVI Joint Conference, St. Petersburg, Russia, 22–27 August 2016. [Google Scholar]
- Blazhchishin, A.I. Palaeogeography and Evolution of Late Quaternary Sedimentation in the Baltic Sea; Gajgalas, A.A., Ed.; Yantarnyj Skaz: Kaliningrad, Russia, 1998; 160p. (In Russian) [Google Scholar]
- Boldyrev, V.L. Formation, development and modern dynamics of the Kaliningrad coast of the Baltic Sea. Study Basic Patterns Trends Mov. Balt. Sea Coastline Over Past 100 Years 1992, 100, 25–33. (In Russian) [Google Scholar]
- Kobelyanskaya, J.; Piekarek-Jankowska, H.; Boldyrev, V.L.; Bobykina, V.P.; Stępniewski, P. The morphodynamics of the Vistula Spit seaward coast (Southern Baltic, Poland, Russia). Oceanol. Hydrobiol. Stud. 2009, 38 (Suppl. S1), 41–56. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2043. [Google Scholar] [CrossRef]
- Shtremel, M. ERA5 wave data verification with buoy field measurements in the nearshore region of the Baltic Sea. In Abstract Book of 6th IAHR Europe Congress; International Association of Hydraulics Research—IAHR: Madrid, Spain, 2021; pp. 433–434. [Google Scholar]
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Gourlay, M.R. Beach and Dune Erosion Tests; Report No.M935/M936; Delft Hydraulics: Delft, The Netherlands, 1968. [Google Scholar]
- Dean, R.G. Heuristic models of sand transport in the surf zone. In Proceedings of the Engineering Dynamics of the Coastal Zone: First Australian Conference on Coastal Engineering, Sydney, Australia, 14–17 May 1973; pp. 208–214. [Google Scholar]
- Grasso, F.; Michallet, H.; Barthélemy, E.; Certain, R. Physical modeling of intermediate cross-shore beach morphology: Transients and equilibrium states. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Atkinson, A.; Shimamoto, T.; Sheng, W.; Birrien, F.; Baldock, T.E. Beach profile evolution under cyclic wave climates. In Proceedings of the 22nd Australasian Coastal and Ocean Engineering Conference and the 15th Australasian Port and Harbour Conference, Auckland, New Zealand, 15–18 September 2015. Australian Coasts and Ports. [Google Scholar]
- Castelle, B.; Masselink, G. Morphodynamics of wave-dominated beaches. Camb. Prism. Coast. Futures 2023, 1, e1. [Google Scholar] [CrossRef]
- Larson, M.; Kraus, N.C. SBEACH: Numerical Model for Simulating Storm-Induced Beach Change; Technical Report CERC-89-9; US Army Engineering Waterways Experimental Station: Vicksburg, MS, USA, 1989; 267p. [Google Scholar]
- Leont’yev, I.O. Coastal Dynamics: Waves, Currents, Sediment Flows; GEOS: Moscow, Russia, 2001; 272p. (In Russian) [Google Scholar]
- Bruun, P. Coast Erosion and the Development of Beach Profile; TM-44; US Army Corps of Engineers Beach Erosion Board: Washington, DC, USA, 1954. [Google Scholar]
- Dean, R.G. Equilibrium beach profiles. Characteristics and applications. J. Coast. Res. 1991, 7, 53–84. [Google Scholar]
- Kriebel, D.L.; Kraus, N.C.; Larson, M. Engineering methods for predicting beach profile response. In Proceedings of the International Conference «Coastal Sediments’91», Seattle, WA, USA, 25–27 June 1991; pp. 557–571. [Google Scholar]
- Lappo, D.D.; Strekalov, S.S.; Zav’yalov, V.K. Loads and Effects of Wind Waves on Hydraulic Structures; VNIIG: Leningrad, Russia, 1990; 432p. (In Russian) [Google Scholar]
- Leont’yev, I.O. Dynamics of barred shore profile on the temporal scale of a storm cycle. Oceanology 2020, 60, 805–813. [Google Scholar] [CrossRef]
- Leont’yev, I.O. Morphological Dynamics in the Coastal Zone of the Sea; LAP LAMBERT Academic: Saarbrücken, Germany, 2014. (In Russian) [Google Scholar]
- Leont’yev, I.O.; Ryabchuk, D.V.; Sergeev, A.Y. Modeling of storm-induced deformations of a sandy coast (based on the example of the eastern Gulf of Finland). Oceanology 2015, 55, 131–141. [Google Scholar] [CrossRef]
- Bailard, J.A. An Energetics Total Load Sediment Transport Model for a Plane Sloping Beach. J. Geophys. Res. Ocean. 1981, 86, 10938–10954. [Google Scholar] [CrossRef]
- Bagnold, R.A. Mechanics of marine sedimentation. In The Sea; J. Wiley: New York, NY, USA, 1963; Volume 3, pp. 507–528. [Google Scholar]
- Aagaard, T.; Davidson_Arnott, R.; Greenwood, B.; Nielsen, J. Sediment supply from shoreface to dune: Linking sediment transport measurements and long_term morphological evolution. Geomorphology 2004, 60, 205–224. [Google Scholar] [CrossRef]
- Phillips, M.S.; Harley, M.D.; Turner, I.L.; Splinter, K.D.; Cox, R.J. Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 2017, 385, 146–159. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Terwindt, J.H.J. The behavior of nearshore bars on the time scale of years: A conceptual model. Mar. Geol. 2000, 163, 289–302. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment transport and budget of the central coastal zone of Holland. Coast. Eng. 1997, 32, 61–90. [Google Scholar] [CrossRef]
Year | 2020 | 2021 | 2022 |
---|---|---|---|
2.9 | 2.59 | 2.91 |
Month | Jan | Feb | March | Apr | May | June |
---|---|---|---|---|---|---|
2.91 | 2.74 | 2.83 | 2.59 | 2.21 | 1.56 | |
Month | July | Aug | Sep | Oct | Nov | Dec |
2.25 | 2.42 | 2.65 | 2.38 | 2.79 | 2.43 |
, hr. | , m | ||
---|---|---|---|
storm 1 | 144 | 4.08 | 10.05 |
storm 2 | 364 | 4.32 | 8.73 |
storm 3 | 51 | 3.85 | 9.16 |
storm 4 | 141 | 3.31 | 8.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzinin, D.; Leont’yev, I. Dynamics of Barred Coast at Different Temporal Scales (by the Example of Vistula Spit in the Baltic Sea). Water 2024, 16, 3124. https://doi.org/10.3390/w16213124
Korzinin D, Leont’yev I. Dynamics of Barred Coast at Different Temporal Scales (by the Example of Vistula Spit in the Baltic Sea). Water. 2024; 16(21):3124. https://doi.org/10.3390/w16213124
Chicago/Turabian StyleKorzinin, Dmitry, and Igor Leont’yev. 2024. "Dynamics of Barred Coast at Different Temporal Scales (by the Example of Vistula Spit in the Baltic Sea)" Water 16, no. 21: 3124. https://doi.org/10.3390/w16213124
APA StyleKorzinin, D., & Leont’yev, I. (2024). Dynamics of Barred Coast at Different Temporal Scales (by the Example of Vistula Spit in the Baltic Sea). Water, 16(21), 3124. https://doi.org/10.3390/w16213124