Preparation of Fe-Modified Diatomite-Based Ceramsite for Efficient Phosphate Adsorption: Utilizing Diatomite’s Distinctive Porous Structure and Surface Silanol Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ceramsite
2.3. Modification of Ceramsite
2.4. Characterization
2.5. Adsorption Experiments
3. Results and Discussion
3.1. Characterization of Diatomite-Based Ceramsite
3.2. Characterization of Modifed Ceramsite
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Adsorption Thermodynamics
3.6. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, W.; Tong, J.; Yang, Z.; Zeng, G.; Zhou, Y.; Wang, D.; Song, P.; Xu, R.; Zhang, C.; Cheng, M. Adsorption of Phosphate from Aqueous Solution Using Iron-Zirconium Modified Activated Carbon Nanofiber: Performance and Mechanism. J. Colloid Interface Sci. 2017, 493, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R.; Jyo, A.; Ihara, T.; Seko, N.; Tamada, M.; Lim, K.T. Enhanced Trace Phosphate Removal from Water by Zirconium(IV) Loaded Fibrous Adsorbent. Water Res. 2011, 45, 4592–4600. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gao, G. Nitrogen and Phosphorus Inputs Control Phytoplankton Growth in Eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef]
- Miao, C.; Tang, Y.; Zhang, H.; Wu, Z.; Wang, X. Harmful Algae Blooms Removal from Fresh Water with Modified Vermiculite. Environ. Technol. 2014, 35, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Korving, L.; Van Loosdrecht, M.C.M.; Witkamp, G.-J. Adsorption as a Technology to Achieve Ultra-Low Concentrations of Phosphate: Research Gaps and Economic Analysis. Water Res. X 2019, 4, 100029. [Google Scholar] [CrossRef] [PubMed]
- Hupfer, M.; Reitzel, K.; Kleeberg, A.; Lewandowski, J. Long-Term Efficiency of Lake Restoration by Chemical Phosphorus Precipitation: Scenario Analysis with a Phosphorus Balance Model. Water Res. 2016, 97, 153–161. [Google Scholar] [CrossRef]
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and Prospects of Different Adsorbents for Phosphorus Uptake and Recovery from Water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Recepoglu, Y.K.; Goren, A.Y.; Orooji, Y.; Khataee, A. Carbonaceous Materials for Removal and Recovery of Phosphate Species: Limitations, Successes and Future Improvement. Chemosphere 2022, 287, 132177. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhang, Q.; Ji, F.; Jiang, L.; Liu, C.; Shen, Q.; Liu, Q. Phosphate Removal Performances of Layered Double Hydroxides (LDH) Embedded Polyvinyl Alcohol/Lanthanum Alginate Hydrogels. Chem. Eng. J. 2022, 430, 132754. [Google Scholar] [CrossRef]
- Lu, J.; Liu, H.; Zhao, X.; Jefferson, W.; Cheng, F.; Qu, J. Phosphate Removal from Water Using Freshly Formed Fe–Mn Binary Oxide: Adsorption Behaviors and Mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 2014, 455, 11–18. [Google Scholar] [CrossRef]
- Zhao, D.; Gao, Y.; Nie, S.; Liu, Z.; Wang, F.; Liu, P.; Hu, S. Self-Assembly of Honeycomb-like Calcium-Aluminum-Silicate-Hydrate (CASH) on Ceramsite Sand and Its Application in Photocatalysis. Chem. Eng. J. 2018, 344, 583–593. [Google Scholar] [CrossRef]
- Li, W.; Cai, G.; Luo, K.; Zhang, J.; Li, H.; Li, G.; Zhang, J.; Chen, X.; Xie, F. Synthesis of Magnesium-Modified Ceramsite from Iron Tailings as Efficient Adsorbent for Phosphorus Removal. Sep. Purif. Technol. 2023, 326, 124817. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, J.; Qin, C.; Huang, Q. Template-Free Route to Fabricate Extra-Lightweight Ceramsite with a Single Large Pore Structure. Ceram. Int. 2023, 49, 36446–36457. [Google Scholar] [CrossRef]
- Shao, Q.; Zhang, Y.; Liu, Z.; Long, L.; Liu, Z.; Chen, Y.; Hu, X.-M.; Lu, M.; Huang, L.-Z. Phosphorus and Nitrogen Recovery from Wastewater by Ceramsite: Adsorption Mechanism, Plant Cultivation and Sustainability Analysis. Sci. Total Environ. 2022, 805, 150288. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wang, Q.; Gao, S.; Poon, C.S.; Zhou, Y.; Li, J. Novel Recycling of Incinerated Sewage Sludge Ash (ISSA) and Waste Bentonite as Ceramsite for Pb-Containing Wastewater Treatment: Performance and Mechanism. J. Environ. Manag. 2021, 288, 112382. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lu, Y.; Eltohamy, K.M.; Liu, B.; Xin, H.; He, S.; Fang, Y.; Liang, X. Zr/Zn Nanocomposites Modified Ceramsite Enhances Phosphorus Removal from Agricultural Drainage Water. Chemosphere 2023, 340, 139852. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Luo, S.; Zhang, L.; Wang, Q.; Huang, X.; Zhang, Y.; Liu, X.; Liang, J.; Duan, X. Study on Preparation and Performance of Iron Tailings-Based Porous Ceramsite Filter Materials for Water Treatment. Sep. Purif. Technol. 2021, 276, 119380. [Google Scholar] [CrossRef]
- Toster, J.; Kusumawardani, I.; Eroglu, E.; Iyer, K.S.; Rosei, F.; Raston, C.L. Superparamagnetic Imposed Diatom Frustules for the Effective Removal of Phosphates. Green Chem. 2014, 16, 82–85. [Google Scholar] [CrossRef]
- Sriram, G.; Kigga, M.; Uthappa, U.T.; Rego, R.M.; Thendral, V.; Kumeria, T.; Jung, H.-Y.; Kurkuri, M.D. Naturally Available Diatomite and Their Surface Modification for the Removal of Hazardous Dye and Metal Ions: A Review. Adv. Colloid Interface Sci. 2020, 282, 102198. [Google Scholar] [CrossRef]
- Chanéac, C.; Tronc, E.; Jolivet, J.P. Magnetic Iron Oxide–Silica Nanocomposites. Synthesis and Characterization. J. Mater. Chem. 1996, 6, 1905–1911. [Google Scholar] [CrossRef]
- Zhao, P.; Sun, N.; Liu, X.; Chen, Z.; Li, Y.; Hu, T.; Xue, X.; Zhang, S.; Sheetah, G.; Xie, Y. Diatomite-Based Adsorbent Decorated with Fe3O4 Nanoparticles for the Removal of Hazardous Metal Ions. ACS Appl. Nano Mater. 2023, 6, 8958–8970. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Qiao, S.; Zhou, J. Magnetic Fe0/Iron Oxide-Coated Diatomite as a Highly Efficient Adsorbent for Recovering Phosphorus from Water. Chem. Eng. J. 2021, 412, 128696. [Google Scholar] [CrossRef]
- Sun, B.; Yang, Q.; Zhu, J.; Shao, T.; Yang, Y.; Hou, C.; Li, G. Pore Size Distributions and Pore Multifractal Characteristics of Medium and Low-Rank Coals. Sci. Rep. 2020, 10, 22353. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.J.; Zhang, Z.; Awasthi, M.K.; Du, D.; Dang, P.; Huang, Q.; Zhang, Y.; Wang, L. Recovery of Phosphate and Dissolved Organic Matter from Aqueous Solution Using a Novel CaO-MgO Hybrid Carbon Composite and Its Feasibility in Phosphorus Recycling. Sci. Total Environ. 2018, 642, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, X.; Wu, F.; Yao, Y.; Yuan, Y.; Bi, X.; Luo, X.; Shahbazian-Yassar, R.; Zhang, C.; Amine, K. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-Ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment. ACS Appl. Mater. Interfaces 2016, 8, 21315–21325. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Gu, Y.; Li, G.; Sun, Q. Study on Preparation and Adsorption Properties of Diatomite-Based Porous Ceramsite. Nat. Environ. Pollut. Technol. 2017, 16, 1283–1286. [Google Scholar]
- Xiong, W.; Peng, J. Development and Characterization of Ferrihydrite-Modified Diatomite as a Phosphorus Adsorbent. Water Res. 2008, 42, 4869–4877. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, N.; An, S.; Cai, C.; Peng, J.; Xie, M.; Peng, J.; Song, X. Synthesis of Novel Hierarchical Porous Zeolitization Ceramsite from Industrial Waste as Efficient Adsorbent for Separation of Ammonia Nitrogen. Sep. Purif. Technol. 2022, 297, 121418. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, Y.; Li, P.; Liu, D.; Ren, Y.; Li, D.; Liu, Z.; Chen, Y.; Ye, Y. Reuse of Phosphogypsum and Phosphorus Ore Flotation Tailings as Adsorbent: The Adsorption Performance and Mechanism of Phosphate. J. Phys. Chem. Solids 2023, 178, 111313. [Google Scholar] [CrossRef]
- Debnath, S.; Das, R. Strong Adsorption of CV Dye by Ni Ferrite Nanoparticles for Waste Water Purification: Fits Well the Pseudo Second Order Kinetic and Freundlich Isotherm Model. Ceram. Int. 2023, 49, 16199–16215. [Google Scholar] [CrossRef]
- Guo, T.; Gu, H.; Ma, S.; Wang, N. Increasing Phosphate Sorption on Barium Slag by Adding Phosphogypsum for Non-Hazardous Treatment. J. Environ. Manag. 2020, 270, 110823. [Google Scholar] [CrossRef] [PubMed]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of Slow Pyrolyzed Wood and Rice Husks Biochar for Adsorption of Ammonium Nitrogen from Piggery Manure Anaerobic Digestate Slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, X.; Zhou, C.; Pang, J.; Zhang, P. Adsorption Neutralization Model and Floc Growth Kinetics Properties of Aluminum Coagulants Based on Sips and Boltzmann Equations. ACS Appl. Mater. Interfaces 2017, 9, 5992–5999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, N.; Feng, C.; Zhang, Z. Adsorption for Phosphate by Crosslinked/Non-Crosslinked-Chitosan-Fe (III) Complex Sorbents: Characteristic and Mechanism. Chem. Eng. J. 2018, 353, 361–372. [Google Scholar] [CrossRef]
- Ren, Y.; Wei, X.; Zhang, M. Adsorption Character for Removal Cu (II) by Magnetic Cu (II) Ion Imprinted Composite Adsorbent. J. Hazard. Mater. 2008, 158, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Nagoya, S.; Nakamichi, S.; Kawase, Y. Mechanisms of Phosphate Removal from Aqueous Solution by Zero-Valent Iron: A Novel Kinetic Model for Electrostatic Adsorption, Surface Complexation and Precipitation of Phosphate under Oxic Conditions. Sep. Purif. Technol. 2019, 218, 120–129. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Liang, G.; Wang, Z.; Li, S.; Wang, Z.; Xie, X. Effective Removal of Two Fluoroquinolone Antibiotics by PEG-4000 Stabilized Nanoscale Zero-Valent Iron Supported onto Zeolite (PZ-NZVI). Sci. Total Environ. 2020, 710, 136289. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, M.; Usseglio, S.; Svelle, S.; Olsbye, U.; Lillerud, K.P.; Tilset, M. Post-Synthetic Modification of the Metal–Organic Framework Compound UiO-66. J. Mater. Chem. 2010, 20, 9848–9851. [Google Scholar] [CrossRef]
- Kwaśniak-Kominek, M.; Matusik, J.; Bajda, T.; Manecki, M.; Rakovan, J.; Marchlewski, T.; Szala, B. Fourier Transform Infrared Spectroscopic Study of Hydroxylpyromorphite Pb10(PO4)6OH2–Hydroxylmimetite Pb10(AsO4)6(OH)2 Solid Solution Series. Polyhedron 2015, 99, 103–111. [Google Scholar] [CrossRef]
- Štandeker, S.; Novak, Z.; Knez, Ž. Adsorption of Toxic Organic Compounds from Water with Hydrophobic Silica Aerogels. J. Colloid Interface Sci. 2007, 310, 362–368. [Google Scholar] [CrossRef]
- Paraknowitsch, J.P.; Zhang, Y.; Wienert, B.; Thomas, A. Nitrogen-and Phosphorus-Co-Doped Carbons with Tunable Enhanced Surface Areas Promoted by the Doping Additives. Chem. Commun. 2013, 49, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Li, Y.; Lv, Z.; Zhou, H.; Yang, X.; Chen, J.; Guo, H. Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-Based MOFs of MIL-101. Sci. Rep. 2017, 7, 3316. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Wu, B.; Su, L.; Xin, W.; Chai, X. Enhanced Phosphate Removal Using Nanostructured Hydrated Ferric-Zirconium Binary Oxide Confined in a Polymeric Anion Exchanger. Chem. Eng. J. 2018, 345, 640–647. [Google Scholar] [CrossRef]
- Wu, K.C.-W.; Yamauchi, Y.; Hong, C.-Y.; Yang, Y.-H.; Liang, Y.-H.; Funatsu, T.; Tsunoda, M. Biocompatible, Surface Functionalized Mesoporous Titania Nanoparticles for Intracellular Imaging and Anticancer Drug Delivery. Chem. Commun. 2011, 47, 5232–5234. [Google Scholar] [CrossRef] [PubMed]
- Mäkie, P.; Westin, G.; Persson, P.; Österlund, L. Adsorption of Trimethyl Phosphate on Maghemite, Hematite, and Goethite Nanoparticles. J. Phys. Chem. A 2011, 115, 8948–8959. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, X.; Huang, Y.; Bian, W.; Ma, L. Two Advanced Oxidation Pathways of Modified Iron-Shavings Participation in Ozonation. Sep. Purif. Technol. 2020, 244, 116838. [Google Scholar] [CrossRef]
- Cui, G.; Liu, M.; Chen, Y.; Zhang, W.; Zhao, J. Synthesis of a Ferric Hydroxide-Coated Cellulose Nanofiber Hybrid for Effective Removal of Phosphate from Wastewater. Carbohydr. Polym. 2016, 154, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, Z.; Ni, J.; Zuo, X. Sustainable Phosphorus Adsorption and Recovery from Aqueous Solution by a Novel Recyclable Ca-PAC-CTS. Sci. Total Environ. 2023, 897, 165444. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.; Muñoz-Saldaña, J.; Garcia-Nunez, J.A.; Acelas, N.; Flórez, E. Unraveling the Ca–P Species Produced over the Time during Phosphorus Removal from Aqueous Solution Using Biocomposite of Eggshell-Palm Mesocarp Fiber. Chemosphere 2022, 287, 132333. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Yu, H.; Li, S.; Qin, L.; Liu, G.; Li, Y.; Du, B. Efficient Removal of Phosphate by Facile Prepared Magnetic Diatomite and Illite Clay from Aqueous Solution. Chem. Eng. J. 2016, 287, 162–172. [Google Scholar] [CrossRef]
- Xue, P.; Hou, R.; Fu, Q.; Li, T.; Wang, J.; Zhou, W.; Shen, W.; Su, Z.; Wang, Y. Potentially Migrating and Residual Components of Biochar: Effects on Phosphorus Adsorption Performance and Storage Capacity of Black Soil. Chemosphere 2023, 336, 139250. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, J.; Wei, D.; Wan, H.; Zheng, S.; Xu, Z.; Zhu, D. ZrO2-Functionalized Magnetic Mesoporous SiO2 as Effective Phosphate Adsorbent. J. Colloid Interface Sci. 2013, 407, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Han, Q.; Li, J.; Li, H. The Behavior of Phosphate Adsorption and Its Reactions on the Surfaces of Fe–Mn Oxide Adsorbent. J. Taiwan Inst. Chem. Eng. 2017, 76, 167–175. [Google Scholar] [CrossRef]
- Wan, J.; Jiang, X.; Zhang, T.C.; Hu, J.; Richter-Egger, D.; Feng, X.; Zhou, A.; Tao, T. The Activated Iron System for Phosphorus Recovery in Aqueous Environments. Chemosphere 2018, 196, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Elskens, M.; Chen, G.; Chou, L. Phosphate Adsorption on Hydrous Ferric Oxide (HFO) at Different Salinities and pHs. Chemosphere 2019, 225, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, C.; Sun, Y.; Ma, C. Effect and Mechanism of Modification Treatment on Ammonium and Phosphate Removal by Ferric-Modified Zeolite. Environ. Technol. 2019, 40, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, W.; Ma, L.; Cao, D.; Owens, G.; Chen, Z. Simultaneous Removal of Ammonia and Phosphate Using Green Synthesized Iron Oxide Nanoparticles Dispersed onto Zeolite. Sci. Total Environ. 2020, 703, 135002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, J.; Lei, Y.; Xu, Z.; Xia, S.; Jiang, Y.; Cheng, J. Phosphorus Removal and Mechanisms by Zn-Layered Double Hydroxide (Zn-LDHs)-Modified Zeolite Substrates in a Constructed Rapid Infiltration System. RSC Adv. 2019, 9, 39811–39823. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, C.; Hu, Y.; Tan, B.; He, Y.; Li, N. Dephosphorization Using Ceramsites Modified by Coprecipitation with FeSo4 and KMnO4 and High-Temperature Combustion. J. Water Process Eng. 2020, 34, 101162. [Google Scholar] [CrossRef]
- Li, N.; Lai, B.; Ding, L.; Li, J.; Liu, C.; Wu, L. Synchronous Algae and Phosphorus Removal by Ceramsite@Fe2O3 (FC) via Taking the Algae as Crystal Nuclei of Hydroxylapatite. Chem. Eng. J. 2021, 426, 130748. [Google Scholar] [CrossRef]
Model | Parameters | Value |
---|---|---|
Pseudo-first-order | qe (mg/g) | 3.9311 |
K1 (1/min) | 0.0970 | |
R2 | 0.9838 | |
Pseudo-second-order | qe (mg/g) | 4.7271 |
K2 (g/(mg·min)) | 0.0232 | |
R2 | 0.9937 | |
Elovich | α (mg/(g·min)) | 1.2689 |
β (g/mg) | 1.0314 | |
R2 | 0.9930 | |
Richie | qe (mg/g) | 4.7271 |
Ki | 0.1097 | |
R2 | 0.9937 | |
Intraparticle diffusion | Kρ (mg/(g·min0.5)) | 0.5818 |
C | 0.4430 | |
R2 | 0.9378 | |
Bangham diffusion | Kb | 0.7563 |
m | 2.1240 | |
R2 | 0.9588 |
Model | Parameter | Value |
---|---|---|
Langmuir | qm (mg/g) | 10.6086 |
KL (L/mg) | 0.0056 | |
R2 | 0.9876 | |
Freundlich | KF ((mg/g)/(mg/L)n) | 0.1029 |
n | 1.2779 | |
R2 | 0.9752 | |
Sips | Q0 (mg/g) | 6.0970 |
KS (L/mg) | 0.0148 | |
s | 0.7330 | |
R2 | 0.9930 |
T (K) | R2 | ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (J/(mol·K)) |
---|---|---|---|---|
298 | 0.9756 | −1.61 | 9.42 | 37.03 |
308 | −1.98 | |||
318 | −2.35 | |||
328 | −2.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Min, Y.; Zhao, X.; Shi, P.; Lu, H. Preparation of Fe-Modified Diatomite-Based Ceramsite for Efficient Phosphate Adsorption: Utilizing Diatomite’s Distinctive Porous Structure and Surface Silanol Groups. Water 2024, 16, 2218. https://doi.org/10.3390/w16162218
Chen Z, Min Y, Zhao X, Shi P, Lu H. Preparation of Fe-Modified Diatomite-Based Ceramsite for Efficient Phosphate Adsorption: Utilizing Diatomite’s Distinctive Porous Structure and Surface Silanol Groups. Water. 2024; 16(16):2218. https://doi.org/10.3390/w16162218
Chicago/Turabian StyleChen, Zhichao, Yulin Min, Xin Zhao, Penghui Shi, and Hongxiu Lu. 2024. "Preparation of Fe-Modified Diatomite-Based Ceramsite for Efficient Phosphate Adsorption: Utilizing Diatomite’s Distinctive Porous Structure and Surface Silanol Groups" Water 16, no. 16: 2218. https://doi.org/10.3390/w16162218