A Mechanistic Model for Simulation of Carbendazim and Chlorothalonil Transport through a Two-Stage Vertical Flow Constructed Wetland
Abstract
:1. Introduction
2. Model Description and Simulation Methods
2.1. Model Description
2.2. Substrate Water Flow
2.3. Solute Transport
2.4. Numerical Calculation Methods
2.5. Contribution of Individual Processes
2.6. Methods of Simulation
2.6.1. Simulation Cases
2.6.2. Calibration of Parameters
2.6.3. Simulation of Standardized Influent Pesticide Concentrations
3. Results and Discussion
3.1. Substrate Water Flow Pattern
3.2. Calibration of Simulation Parameters
3.3. Simulation of Pesticide Transport through the CW
3.3.1. Carbendazim
3.3.2. Chlorothalonil
3.4. Contribution of Individual Processes in Pesticide Transport
3.5. Simulation of CW Performance at Standardized Influent Pesticide Concentrations
3.6. Discussion of Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs Trade Data. Available online: https://comtradeplus.un.org/TradeFlow (accessed on 14 December 2023).
- National Bank of Ethiopia. National Bank of Ethiopia Annual Bulletin; National Bank of Ethiopia: Addis Ababa, Ethiopia, 2023.
- Ayalew Worku, M.; Lemi Debela, K.; Mudde, H.L.M. Competitive Performance of the Ethiopian Flower Industry from a Pre-to Post COVID-19 Pandemic Era (2003–2022): A Comparative Study. Int. J. Organ. Leadersh. 2023, 12, 91–114. [Google Scholar] [CrossRef]
- EHPEA EHPEA|Farm Locations. Available online: https://ehpea.org/farm-location/ (accessed on 9 March 2022).
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, Monitoring and Biodegradation of the Fungicide Carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Bergin, R. Potential for Chlorothalonil Movement to California Groundwater as a Result of Agricultural Use; Department of Pesticide Regulation Environmental Monitoring Branch: Sacremento, CA, USA, 2019.
- Commission Implementing Regulation (EU) No 542/2011. Available online: https://eur-lex.europa.eu/eli/reg_impl/2011/542#ntc2-L_2011153EN.01018901-E0002 (accessed on 23 November 2021).
- No 528/2012; Concerning the Making Available on the Market and Use of Biocidal Products Evaluation of Active Substances Carbendazim. European Commission Regulation (EU): Brussels, Belgium, 2012.
- Vymazal, J.; Březinová, T. The Use of Constructed Wetlands for Removal of Pesticides from Agricultural Runoff and Drainage: A Review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef]
- EHPEA. Waste Water Management (WETLAND)—EHPEA. Available online: https://ehpea.org/waste-water-management-wetland/ (accessed on 5 May 2023).
- Engida, T.; Alemu, T.; Wu, J.; Xu, D.; Zhou, Q.; Wu, Z. Analysis of Constructed Wetlands Technology Performance Efficiency for the Treatment of Floriculture Industry Wastewater, in Ethiopia. J. Water Process Eng. 2020, 38, 101586. [Google Scholar] [CrossRef]
- Rìos-Montes, K.A.; Casas-Zapata, J.C.; Briones-Gallardo, R.; Peñuela, G. Optimal Conditions for Chlorothalonil and Dissolved Organic Carbon in Horizontal Subsurface Flow Constructed Wetlands. J. Environ. Sci. Health B 2017, 52, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Sherrard, R.M.; Bearr, J.S.; Murray-Gulde, C.L.; Rodgers, J.H.; Shah, Y.T. Feasibility of Constructed Wetlands for Removing Chlorothalonil and Chlorpyrifos from Aqueous Mixtures. Environ. Pollut. 2004, 127, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Y.; Yang, Y.; McBride, M.B.; Tao, R.; Dai, Y.N.; Zhang, X.M. Removal of Chlorpyrifos in Recirculating Vertical Flow Constructed Wetlands with Five Wetland Plant Species. Chemosphere 2019, 216, 195–202. [Google Scholar] [CrossRef]
- Lyu, T.; Zhang, L.; Xu, X.; Arias, C.A.; Brix, H.; Carvalho, P.N. Removal of the Pesticide Tebuconazole in Constructed Wetlands: Design Comparison, Influencing Factors and Modelling. Environ. Pollut. 2018, 233, 71–80. [Google Scholar] [CrossRef]
- Wehbe, S.; Zewge, F.; Inagaki, Y.; Sievert, W.; Uday Kumar, N.T.; Deshpande, A. Performance of Carbendazim Removal Using Constructed Wetlands for the Ethiopian Floriculture Industry. Water Sci. Technol. 2022, 86, 142–151. [Google Scholar] [CrossRef]
- Wehbe, S.; Zewge, F.; Inagaki, Y.; Sievert, W.; Nutakki, T.U.K.; Deshpande, A. Unsaturated Vertical Flow Constructed Wetland for Chlorothalonil Remediation with Target Application in Ethiopian Floriculture Industry. Water 2023, 15, 3282. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Hubert, E.; Koopman, H.W.; Portielje, R.; Crum, S.J.H. Modeling the Vertical Distribution of Carbendazim in Sediments. Environ. Toxicol. Chem. 2000, 19, 793–800. [Google Scholar] [CrossRef]
- Chen, S.; Mao, X.; Barry, D.A.; Yang, J. Model of Crop Growth, Water Flow, and Solute Transport in Layered Soil. Agric. Water Manag. 2019, 221, 160–174. [Google Scholar] [CrossRef]
- Yuan, C.; Huang, T.; Zhao, X.; Zhao, Y. Numerical Models of Subsurface Flow Constructed Wetlands: Review and Future Development. Sustainability 2020, 12, 3498. [Google Scholar] [CrossRef]
- Stephenson, R.; Sheridan, C. Review of Experimental Procedures and Modelling Techniques for Flow Behaviour and Their Relation to Residence Time in Constructed Wetlands. J. Water Process Eng. 2021, 41, 102044. [Google Scholar] [CrossRef]
- Boog, J.; Kalbacher, T.; Nivala, J.; Forquet, N.; van Afferden, M.; Müller, R.A. Modeling the Relationship of Aeration, Oxygen Transfer and Treatment Performance in Aerated Horizontal Flow Treatment Wetlands. Water Res. 2019, 157, 321–334. [Google Scholar] [CrossRef]
- Ma, X.; Du, Y.; Peng, W.; Zhang, S.; Liu, X.; Wang, S.; Yuan, S.; Kolditz, O. Modeling the Impacts of Plants and Internal Organic Carbon on Remediation Performance in the Integrated Vertical Flow Constructed Wetland. Water Res. 2021, 204, 117635. [Google Scholar] [CrossRef]
- Chen, S.; Dougherty, M.; Chen, Z.; Zuo, X.; He, J. Managing Biofilm Growth and Clogging to Promote Sustainability in an Intermittent Sand Filter (ISF). Sci. Total Environ. 2021, 755, 142477. [Google Scholar] [CrossRef]
- Rajabzadeh, A.R.; Legge, R.L.; Weber, K.P. Multiphysics Modelling of Flow Dynamics, Biofilm Development and Wastewater Treatment in a Subsurface Vertical Flow Constructed Wetland Mesocosm. Ecol. Eng. 2015, 74, 107–116. [Google Scholar] [CrossRef]
- García, J.; Solimeno, A.; Zhang, L.; Marois, D.; Mitsch, W.J. Constructed Wetlands to Solve Agricultural Drainage Pollution in South Florida: Development of an Advanced Simulation Tool for Design Optimization. J. Clean. Prod. 2020, 258, 120868. [Google Scholar] [CrossRef]
- Maurer, L.; Villette, C.; Reiminger, N.; Jurado, X.; Laurent, J.; Nuel, M.; Mosé, R.; Wanko, A.; Heintz, D. Distribution and Degradation Trend of Micropollutants in a Surface Flow Treatment Wetland Revealed by 3D Numerical Modelling Combined with LC-MS/MS. Water Res. 2021, 190, 116672. [Google Scholar] [CrossRef]
- Guo, C.; Wan, D.; Li, Y.; Zhu, Q.; Luo, Y.; Luo, W.; Cui, Y. Quantitative Prediction of the Hydraulic Performance of Free Water Surface Constructed Wetlands by Integrating Numerical Simulation and Machine Learning. J. Environ. Manag. 2023, 337, 117745. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, G.; Venutelli, M. Richards: Computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil. Comput. Geosci. 1993, 19, 1239–1266. [Google Scholar] [CrossRef]
- Chaves, R.; López, D.; Macías, F.; Casares, J.; Monterroso, C. Application of System Dynamics Technique to Simulate the Fate of Persistent Organic Pollutants in Soils. Chemosphere 2013, 90, 2428–2434. [Google Scholar] [CrossRef] [PubMed]
- Celia, M.A.; Bouloutas, E.T.; Zarba, R.L. A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation. Water Resour. Res. 1990, 26, 1483–1496. [Google Scholar] [CrossRef]
- Guelfo, J.L.; Wunsch, A.; McCray, J.; Stults, J.F.; Higgins, C.P. Subsurface Transport Potential of Perfluoroalkyl Acids (PFAAs): Column Experiments and Modeling. J. Contam. Hydrol. 2020, 233, 103661. [Google Scholar] [CrossRef] [PubMed]
- Fournel, J.; Forquet, N.; Molle, P.; Grasmick, A. Modeling Constructed Wetlands with Variably Saturated Vertical Subsurface-Flow for Urban Stormwater Treatment. Ecol. Eng. 2013, 55, 1–8. [Google Scholar] [CrossRef]
- Imfeld, G.; Payraudeau, S.; Tournebize, J.; Sauvage, S.; Macary, F.; Chaumont, C.; Probst, A.; Sánchez-Pérez, J.M.; Bahi, A.; Chaumet, B.; et al. The Role of Ponds in Pesticide Dissipation at the Agricultural Catchment Scale: A Critical Review. Water 2021, 13, 1202. [Google Scholar] [CrossRef]
- Bahi, A.; Sauvage, S.; Payraudeau, S.; Imfeld, G.; Sánchez-Pérez, J.M.; Chaumet, B.; Tournebize, J. Process Formulations and Controlling Factors of Pesticide Dissipation in Artificial Ponds: A Critical Review. Ecol. Eng. 2023, 186, 106820. [Google Scholar] [CrossRef]
- Bahi, A.; Sauvage, S.; Payraudeau, S.; Tournebize, J. PESTIPOND: A Descriptive Model of Pesticide Fate in Artificial Ponds: II. Model Application and Evaluation. Ecol. Modell. 2023, 484, 110472. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Bork, M.; Hensen, B.; Lange, J. Hydrological Tracers for Assessing Transport and Dissipation Processes of Pesticides in a Model Constructed Wetland System. Hydrol. Earth Syst. Sci. 2020, 24, 41–60. [Google Scholar] [CrossRef]
- Adhikary, A.; Datta, D.; Pal, S.; Adhikari, K.; Ghosh, S. Assessment of Subsurface Migration and Simultaneous Removal of Carbendazim in Simulated Constructed Wetland through Physical and Numerical Modeling. J. Water Process Eng. 2022, 50, 103272. [Google Scholar] [CrossRef]
- Gaullier, C.; Dousset, S.; Baran, N.; Kitzinger, G.; Coureau, C. Influence of Hydrodynamics on the Water Pathway and Spatial Distribution of Pesticide and Metabolite Concentrations in Constructed Wetlands. J. Environ. Manag. 2020, 270, 110690. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Carbendazim | Chlorothalonil | ||
---|---|---|---|---|---|
Value | Reference | Value | Reference | ||
Henry Constant | - | 1.28 × 10−6 | [8] | 8.06 × 10−6 | [13] |
Molecular diffusion coefficient in water | cm2 s−1 | 2.43 × 10−6 | [18] | 1.39 × 10−5 | [6] |
Diffusion coefficient in air | cm2 s−1 | NA | [18] | 4.98 × 10−2 | [6] |
Organic carbon partition coefficient | cm2 g−1 | 450 | [8] | 3100 | [6] |
First-order degradation rate constant | s−1 | 7.29 × 10−7 | [18] | 1.01 × 10−6 (aerobic) 1.61 × 10−5 (anaerobic) | [13] |
Parameter | Description | Unit | Value for Top Layer (Sand 1–2 mm) | Value for Middle and Bottom Layers (Gravel 2–10 mm, 10–20 mm) |
---|---|---|---|---|
Residual water content | - | 0.075 | 0.04 | |
Saturated water content | - | 0.37 | 0.43 | |
van Genuchten shape parameter | cm−1 | 0.12246 | 0.18 | |
- | 2.8 | 3.3 | ||
Saturated hydraulic conductivity | cm s−1 | 0.5155 | 1.1875 |
Case No. | Pesticide | Hydraulic Loading Rate | Influent Concentration | Water Saturation | Label |
---|---|---|---|---|---|
1 | Carbendazim | 100 L/m3/d | 73 μg/L | Saturated | C73-L100-S |
2 | 200 L/m3/d | 43 μg/L | C43-L200-S | ||
3 | 400 L/m3/d | 190 μg/L | C190-L400-S | ||
4 | 100 L/m3/d | 100 μg/L | C100-L100-S | ||
5 | 200 L/m3/d | 100 μg/L | C100-L200-S | ||
6 | 400 L/m3/d | 100 μg/L | C100-L400-S | ||
7 | 200 L/m3/d | 127 μg/L | Unsaturated | C127-L200-U | |
8 | Chlorothalonil | 50 L/m3/d | 100 μg/L | Unsaturated | C76-L050-U |
9 | 200 L/m3/d | 100 μg/L | C79-L200-U | ||
10 | 400 L/m3/d | 100 μg/L | C72-L400-U | ||
11 | 50 L/m3/d | 500 μg/L | C236-L050-U | ||
12 | 200 L/m3/d | 500 μg/L | C171-L200-U | ||
13 | 400 L/m3/d | 500 μg/L | C391-L400-U | ||
14 | 50 L/m3/d | 50 mg/L | C050G-L050-U |
Condition | Target Pesticide | Influent Concentration (µg L−1) | HLR (L d−1 m−2) | Stage A Effluent (µg L−1) | Stage B Effluent (µg L−1) | Normalized Factor |
---|---|---|---|---|---|---|
1 | Carbendazim | 10 | 100 | 53.64 | 1.05 | 0.105 |
2 | Carbendazim | 10 | 200 | 26.9 | 2.41 | 0.241 |
3 | Carbendazim | 10 | 400 | 22.94 | 3.51 | 0.351 |
4 | Carbendazim | 100 | 100 | 536.41 | 10.5 | 0.105 |
5 | Carbendazim | 100 | 200 | 269 | 24.12 | 0.2412 |
6 | Carbendazim | 100 | 400 | 229.36 | 35.13 | 0.3513 |
7 | Chlorothalonil | 100 | 50 | 0 | 0 | 0 |
8 | Chlorothalonil | 100 | 200 | 4.85 | 0 | 0.0485 |
9 | Chlorothalonil | 100 | 400 | 19.5 | 0 | 0.195 |
10 | Chlorothalonil | 500 | 50 | 0.01 | 0 | 0.00002 |
11 | Chlorothalonil | 500 | 200 | 24.26 | 0 | 0.04852 |
12 | Chlorothalonil | 500 | 400 | 97.48 | 0 | 0.19496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehbe, S.; Zewge, F.; Inagaki, Y.; Sievert, W.; Nutakki, T.U.K.; Deshpande, A. A Mechanistic Model for Simulation of Carbendazim and Chlorothalonil Transport through a Two-Stage Vertical Flow Constructed Wetland. Water 2024, 16, 142. https://doi.org/10.3390/w16010142
Wehbe S, Zewge F, Inagaki Y, Sievert W, Nutakki TUK, Deshpande A. A Mechanistic Model for Simulation of Carbendazim and Chlorothalonil Transport through a Two-Stage Vertical Flow Constructed Wetland. Water. 2024; 16(1):142. https://doi.org/10.3390/w16010142
Chicago/Turabian StyleWehbe, Stan, Feleke Zewge, Yoshihiko Inagaki, Wolfram Sievert, Tirumala Uday Kumar Nutakki, and Akshay Deshpande. 2024. "A Mechanistic Model for Simulation of Carbendazim and Chlorothalonil Transport through a Two-Stage Vertical Flow Constructed Wetland" Water 16, no. 1: 142. https://doi.org/10.3390/w16010142
APA StyleWehbe, S., Zewge, F., Inagaki, Y., Sievert, W., Nutakki, T. U. K., & Deshpande, A. (2024). A Mechanistic Model for Simulation of Carbendazim and Chlorothalonil Transport through a Two-Stage Vertical Flow Constructed Wetland. Water, 16(1), 142. https://doi.org/10.3390/w16010142