Effects of Straw Mulching and Reduced Tillage on Crop Production and Environment: A Review
Abstract
:1. Introduction
2. The Effect of Straw Mulching and Reduced Tillage on the Soil Environment
2.1. Soil Organic Matter
2.2. Soil Moisture
2.3. Soil Temperature
2.4. Soil Microorganisms
2.5. Soil Enzymes
2.6. Soil Fertility
2.7. Soil Emissions
2.8. Insect Pests, Weeds, and Soil Erosion
3. Effects of Straw Mulching and Reduced Tillage on Crop Growth, Grain Yield, and WUE
3.1. Water Use Efficiency
3.2. Grain Yield
4. Suggestions for Future Research
4.1. Select a Combination of Agricultural Practices
4.2. Explore the Role of Trace Elements
4.3. Application of Plant Physiology in Agriculture
4.4. Risk of Soil Pollution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Balzer, C.; Befort, H.B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Cassman, K.G. Green revolution still too green. Nature 1999, 398, 556. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Rasmussen, K.J. Impact of ploughless soil tillage on yield and soil quality: A Scandinavian review. Soil Tillage Res. 1999, 53, 3–14. [Google Scholar] [CrossRef]
- Awe, G.O.; Reichert, J.M.; Timm, L.C.; Wendroth, O.O. Temporal processes of soil water status in a sugarcane field under residue management. Plant Soil 2015, 387, 395–411. [Google Scholar] [CrossRef]
- Smets, T.; Poesen, J.; Knapen, A. Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth Sci. Rev. 2008, 89, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Zhao, X.; Wu, P.; Horwath, W.R.; Li, H.; Jing, Z.; Chen, X. Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degrad. Dev. 2016, 27, 35–42. [Google Scholar] [CrossRef]
- Luna, L.; Miralles, I.; Andrenelli, M.C.; Gispert, M.; Pellegrini, S.; Vignozzi, N.; Solé-Benet, A. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena 2016, 143, 256–264. [Google Scholar] [CrossRef]
- Gibbon, D. Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; p. 112. ISBN 978-92-5-106871-7. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Alliaume, F.; Rossing, W.A.H.; Tittonell, P.; Dogliotti, S. Modelling soil tillage and mulching effects on soil water dynamics in raised-bed vegetable rotations. Eur. J. Agron. 2017, 82, 268–281. [Google Scholar] [CrossRef]
- Kaur, A.; Brar, A.S. Influence of mulching and irrigation scheduling on productivity and water use of turmeric (Curcuma longa L.) in north-western India. Irrig. Sci. 2016, 34, 261–269. [Google Scholar] [CrossRef]
- Kim, G.W.; Das, S.; Hwang, H.Y.; Kim, P.J. Nitrous oxide emissions from soils amended by cover-crops and under plastic film mulching: Fluxes, emission factors and yield-scaled emissions. Atmos. Environ. 2017, 152, 377–388. [Google Scholar] [CrossRef]
- Kurothe, R.S.; Kumar, G.; Singh, R.; Singh, H.B.; Tiwari, S.P.; Vishwakarma, A.K.; Sena, D.R.; Pande, V.C. Effect of tillage and cropping systems on runoff, soil loss and crop yields under semiarid rainfed agriculture in India. Soil Tillage Res. 2014, 140, 126–134. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, J.; Pang, H.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res. 2016, 155, 363–370. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, G.C.; Chen, Y.L.; Gong, X.F.; Peng, Y.N.; Wang, Z.Y.; Ren, A.T.; Xiong, Y.C. Inoculation of arbuscular mycorrhizal fungi with plastic mulching in rainfed wheat: A promising farming strategy. Field Crops Res. 2017, 204, 229–241. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Arshad, M.A.; Franzluebbers, A.J.; Azooz, R.H. Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil Tillage Res. 1999, 53, 41–47. [Google Scholar] [CrossRef]
- Xie, Z.K.; Wang, Y.J.; Li, F.M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 2005, 75, 71–83. [Google Scholar] [CrossRef]
- Zhang, S.; Lövdahl, L.; Grip, H.; Tong, Y.; Yang, X.; Wang, Q. Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil Tillage Res. 2009, 102, 78–86. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Pei, D.; Sun, H.; Chen, S. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Balota, E.L.; Yada, I.F.; Amaral, H.; Nakatani, A.S.; Dick, R.P.; Coyne, M.S. Long-term land use influences soil microbial biomass p and s, phosphatase and arylsulfatase activities, and s mineralization in a brazilian oxisol. Land Degrad. Dev. 2014, 25, 397–406. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y.; Xie, Z. Long-term gravel–sand mulch affects soil physicochemical properties, microbial biomass and enzyme activities in the semi-arid Loess Plateau of North-western China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 294–303. [Google Scholar] [CrossRef]
- Guo, D.; Li, X.; Li, X.; Wang, J.; Fu, H. Conventional tillage increases soil microbial biomass and activity in the Loess Plateau, China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 489–496. [Google Scholar] [CrossRef]
- Bationo, A.; Kihara, J.; Vanlauwe, B.; Waswa, B.; Kimetu, J. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric. Syst. 2004, 94, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.; Fu, T.; Wang, L.; Turner, N.; Siddique, K.; Li, F. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 2016, 228–229, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Masciandaro, G.; Ceccanti, B.; Benedicto, S.; Lee, H.C.; Cook, H.F. Enzyme activity and C and N pools in soil following application of mulches. Can. J. Soil Sci. 2004, 84, 19–30. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Cover crops and mulches influence weed management and weed flora composition in strip-tilled tomato (Solanum lycopersicum). Weed Res. 2015, 55, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Ziadi, N.; Angers, D.A.; Gagnon, B.; Lalande, R.; Morel, C.; Rochette, P.; Chantigny, M.H. Long-term tillage and synthetic fertilization affect soil functioning and crop yields in a corn–soybean rotation in eastern Canada. Can. J. Soil Sci. 2014, 94, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Lund, M.G.; Carter, P.R.; Oplinger, E.S. Tillage and Crop Rotation Affect Corn, Soybean, and Winter Wheat Yields. J. Prod. Agric. 1993, 6, 207. [Google Scholar] [CrossRef] [Green Version]
- Saffigna, P.G.; Powlson, D.S.; Brookes, P.C.; Thomas, G.A. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an australian vertisol. Soil Biol. Biochem. 1989, 21, 759–765. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage, Nitrogen, and Cropping System Effects on Soil Carbon Sequestration. Soil Sci. Soc. Am. J. 2002, 66, 906–912. [Google Scholar] [CrossRef]
- Jabro, J.D.; Sainju, U.M.; Stevens, W.B.; Lenssen, A.W.; Evans, R.G. Long-term tillage influences on soil physical properties under dryland conditions in northeastern Montana. Arch. Agron. Soil Sci. 2009, 55, 633–640. [Google Scholar] [CrossRef]
- Cociu, A.I. Tillage system effects on input efficiency of winter wheat, maize and soybean in rotation. Rom. Agric. Res. 2010, 27, 81–87. [Google Scholar]
- Shaver, T.M.; Peterson, G.A.; Ahuja, L.R.; Westfall, D.G.; Sherrod, L.A.; Dunn, G. Surface Soil Physical Properties after Twelve Years of Dryland No-Till Management. Soil Sci. Soc. Am. J. 2010, 66, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Hardeman, W.; Johnston, M.; Johnston, D.; Bonetti, D.; Kinmonth, A.L. Application of the Theory of Planned Behaviour in Behaviour Change Interventions: A Systematic Review. Psychol. Health 2002, 17, 123–158. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Xu, J.; Xu, H. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil Tillage Res. 2004, 78, 9–20. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; da Silva Dias, N.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Youkhana, A.; Idol, T. Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol. Biochem. 2009, 41, 2527–2534. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Z.; Zhou, J.; Xu, X.; Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total Environ. 2021, 775, 145930. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiang, H.; McHugh, A.D.; He, J.; Li, H.; Wang, Q.; Lu, Z. Effect of conservation farming practices on soil organic matter and stratification in a mono-cropping system of Northern China. Soil Tillage Res. 2016, 156, 173–181. [Google Scholar] [CrossRef]
- Neilsen, G.; Forge, T.; Angers, D.; Neilsen, D.; Hogue, E. Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance. Plant Soil 2014, 378, 325–335. [Google Scholar] [CrossRef]
- Malhi, S.S.; Kutcher, H.R. Small grains stubble burning and tillage effects on soil organic C and N, and aggregation in northeastern Saskatchewan. Soil Tillage Res. 2007, 94, 353–361. [Google Scholar] [CrossRef]
- Tan, Z.; Lal, R.; Owens, L.; Izaurralde, R. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Tillage Res. 2007, 92, 53–59. [Google Scholar] [CrossRef]
- Jacobs, A.; Evans, R.S.; Allison, J.; Garner, E.; Kingery, W.; McCulley, R. Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil Tillage Res. 2022, 218, 105310. [Google Scholar] [CrossRef]
- Baan, C.D.; Grevers, M.C.J.; Schoenau, J.J. Effects of a single cycle of tillage on long-term no-till prairie soils. Can. J. Soil Sci. 2009, 89, 521–530. [Google Scholar] [CrossRef]
- Kader, M.A.; Sleutel, S.; D’Haene, K.; De Neve, S. Limited influence of tillage management on organic matter fractions in the surface layer of silt soils under cereal–root crop rotations. Soil Res. 2010, 48, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Bai, Y.; Gao, H.; He, J.; Chen, H.; Chesney, R.C.; Kuhn, N.J.; Li, H. Soil chemical properties and microbial biomass after 16 years of no-tillage farming on the Loess Plateau, China. Geoderma 2008, 144, 502–508. [Google Scholar] [CrossRef]
- Turner, N.C. Sustainable production of crops and pastures under drought in a Mediterranean environment. Ann. Appl. Biol. 2004, 144, 139–147. [Google Scholar] [CrossRef]
- Li, X.; Šimůnek, J.; Shi, H.; Yan, J.; Peng, Z.; Gong, X. Spatial distribution of soil water, soil temperature, and plant roots in a drip-irrigated intercropping field with plastic mulch. Eur. J. Agron. 2017, 83, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.E. Influence of mulches on runoff, erosion, and soil moisture depletion. Soil Sci. Soc. Am. J. 1966, 30, 110–114. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, H.; Wang, J.; Huo, L.; Li, Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of straw mulch on growth and yield of durum wheat during transition to Conservation Agriculture in Mediterranean environment. Field Crops Res. 2014, 167, 51–63. [Google Scholar] [CrossRef]
- Wang, H.; Lemke, R.; Goddard, T.; Sprout, C. Tillage and root heat stress in wheat in central Alberta. Can. J. Soil Sci. 2007, 87, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Lampurlanés, J.; Cantero-Martínez, C. Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil Tillage Res. 2006, 85, 13–26. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.; Turner, N.C.; Li, X.-G.; Niu, J.-Y.; Yang, C.; Liu, L.; Chai, Q. Ridge-furrow mulching systems—An innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar]
- Olasantan, F.O. Effect of time of mulching on soil temperature and moisture regime and emergence, growth and yield of white yam in western Nigeria. Soil Tillage Res. 1999, 50, 215–221. [Google Scholar] [CrossRef]
- Ratan, S.; Sharma, A.; Dhyani, S.; Dube, R. Tillage and mulching effects on performance of maize (Zea mays)-wheat (Triticum aestivum) cropping system under varying land slopes. Indian J. Agric. Sci. 2011, 81, 330–335. [Google Scholar]
- Cadavid, L.F.; El-Sharkawy, M.A.; Costa, A.A.; Sánchez, T. Long-term effects of mulch, fertilization and tillage on cassava grown in sandy soils in northern Colombia. Field Crops Res. 1998, 57, 45–56. [Google Scholar] [CrossRef]
- Yang, Y.M.; Li, W.Q. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B 2006, 7, 858. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Bai, Z.; Shah, F.; Cui, G.; Xiao, Z.; Gong, H.; Li, D.; Lin, Y.; Li, B.; Ji, G. Compositional and structural changes in soil microbial communities in response to straw mulching and plant revegetation in an abandoned artificial pasture in Northeast China. Glob. Ecol. Conserv. 2021, 31, e01871. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, X.; Zheng, B.; Yue, S.; Zhang, X.; Zhai, B.; Wang, Z.; Zheng, W.; Li, Z.; Zamanian, K. Effects of plastic and straw mulching on soil microbial P limitations in maize fields: Dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry. Geoderma 2021, 388, 114928. [Google Scholar] [CrossRef]
- Yao, X.H.; Min, H.; Lü, Z.; Yuan, H.P. Influence ofacetamiprid onsoil enzymatic activities andrespiration. Eur. J. Soil Biol. 2006, 42, 120–126. [Google Scholar] [CrossRef]
- Bending, G.D.; Turner, M.K.; Jones, J.E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol. Biochem. 2002, 34, 1073–1082. [Google Scholar] [CrossRef]
- Wardle, D. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Subrahmaniyan, K.; Kalaiselvan, P.; Balasubramanian, T.N.; Zhou, W. Crop productivity and soil properties as affected by polyethylene film mulch and land configurations in groundnut (Arachis hypogaea L.). Arch. Agron. Soil Sci. 2006, 52, 79–103. [Google Scholar] [CrossRef]
- Tu, C.; Ristaino, J.B.; Hu, S. Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biol. Biochem. 2006, 38, 247–255. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Reicher, Z.; Bischoff, M.; Turco, R.F. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biol. Fertil. Soils 1999, 29, 55–61. [Google Scholar] [CrossRef]
- Fenner, N.; Freeman, C.; Reynolds, B. Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol. Biochem. 2005, 37, 1814–1821. [Google Scholar] [CrossRef]
- Wang, C.; Long, R.; Wang, Q.; Liu, W.; Jing, Z.; Zhang, L. Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities. Plant Soil 2010, 331, 377–389. [Google Scholar] [CrossRef]
- Krupinsky, J.M.; Bailey, K.L.; Mcmullen, M.P.; Gossen, B.D.; Turkington, T.K. Managing plant disease risk in diversified cropping systems. Agron. J. 2002, 94, 198–209. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, B.; Zhang, X.; Yang, X.; Zhang, X. Effects of tillage and crop rotation on soil microbial residues in a rainfed agroecosystem of northeast China. Soil Tillage Res. 2011, 114, 43–49. [Google Scholar] [CrossRef]
- Adl, S.M.; Coleman, D.C.; Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 2006, 114, 323–334. [Google Scholar] [CrossRef]
- Hydbom, S.; Ernfors, M.; Birgander, J.; Hollander, J.; Jensen, E.S.; Olsson, P.A. Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to a shift in the saprotrophic microorganism community structure. Appl. Soil Ecol. 2017, 119, 104–114. [Google Scholar] [CrossRef]
- Wilhelm, W.; Wortmann, C.S. Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. Agron. J. 2004, 96, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Meriles, J.M.; Gil, S.V.; Haro, R.J.; March, G.J.; Guzman, C.A. Glyphosate and Previous Crop Residue Effect on Deleterious and Beneficial Soil-borne Fungi from a Peanut–Corn–Soybean Rotations. J. Phytopathol. 2010, 154, 309–316. [Google Scholar] [CrossRef]
- Fatemi, F.R.; Fernandez, I.J.; Simon, K.S.; Dail, D.B. Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils. Soil Biol. Biochem. 2016, 98, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol. Biochem. 2006, 38, 1577–1582. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Zeglin, L.H. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, K.; Thiele-Bruhn, S.; Kenngott, K.G.; Meyer, M.; Diehl, D.; Steinmetz, Z.; Schaumann, G.E. Effects of plastic versus straw mulching systems on soil microbial community structure and enzymes in strawberry cultivation. Soil Syst. 2022, 6, 21. [Google Scholar] [CrossRef]
- Siczek, A.; Frac, M. Soil microbial activity as influenced by compaction and straw mulching. Int. Agrophysics 2012, 26, 65–69. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Pan, H.-j.; Zhang, K.-Y.; Sun, W.; Wang, X.-J.; Gao, H. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil Biol. 2015, 70, 23–30. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Tabatabai, M. Tillage and residue management effects on arylamidase activity in soils. Biol. Fertil. Soils 2001, 34, 21–24. [Google Scholar]
- Elfstrand, S.; Båth, B.; Mårtensson, A. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl. Soil Ecol. 2007, 36, 70–82. [Google Scholar] [CrossRef]
- Balota, E.L.; Colozzi Filho, A.; Andrade, D.S.; Dick, R.P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res. 2004, 77, 137–145. [Google Scholar] [CrossRef]
- Ge, G.F.; Li, Z.J.; Zhang, J.; Wang, L.G.; Xu, M.G.; Zhang, J.B.; Wang, J.K.; Xie, X.L.; Liang, Y.C. Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecol. Complex. 2009, 6, 421–431. [Google Scholar] [CrossRef]
- Jin, K.; Sleutel, S.; Buchan, D.; Neve, S.D.; Cai, D.X.; Gabriels, D.; Jin, J.Y. Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil Tillage Res. 2009, 104, 115–120. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, S.; Zhou, S.; Lin, C. Installation of impervious surface in urban areas affects microbial biomass, activity (potential C mineralisation), and functional diversity of the fine earth. Soil Res. 2013, 51, 59–67. [Google Scholar] [CrossRef]
- Meyer, M.; Diehl, D.; Schaumann, G.E.; Muñoz, K. Multiannual soil mulching in agriculture: Analysis of biogeochemical soil processes under plastic and straw mulches in a 3-year field study in strawberry cultivation. J. Soils Sediments 2021, 21, 3733–3752. [Google Scholar] [CrossRef]
- Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 1998, 51, 239–248. [Google Scholar] [CrossRef]
- Duda, G.P.; Guerra, J.G.M.; Monteiro, M.T.; De-Polli, H.; Teixeira, M.G. Perennial herbaceous legumes as live soil mulches and their effects on C, N and P of the microbial biomass. Sci. Agric. 2003, 60, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Liu, X.J.; Wang, J.C.; Lu, S.H.; Zhang, F.S.; Zeng, X.Z.; Ai, Y.W.; Peng, S.B.; Christie, P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice–wheat cropping systems. Field Crops Res. 2003, 83, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Jiang, R.; Liu, X.; Zhang, F.; Lu, S.; Zeng, X.; Christie, P. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crops Res. 2005, 91, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, J.; Fan, J.; Zhang, F.; Huang, C. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis. Field Crops Res. 2021, 270, 108210. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, H.; Fan, J.; Zhang, F.; Guo, J.; Liao, Z.; Zhuang, Q. Wheat straw mulching with nitrification inhibitor application improves grain yield and economic benefit while mitigating gaseous emissions from a dryland maize field in northwest China. Field Crops Res. 2021, 265, 108125. [Google Scholar] [CrossRef]
- Hitoshi, O.; Katsuji, N.; Takuji, S.; Haruo, T.; Toshio, H.; Yoshimi, Y.J.; Kazuyuki, Y. Emission of N2O and CO2 and Uptake of CH4 in Soil from a Satsuma Mandarin Orchard under Mulching Cultivation in Central Japan. Eng Gakkai Zasshi 2007, 76, 279–287. [Google Scholar]
- Larsson, L.; Ferm, M.; Kasimir-Klemedtsson, A.; Klemedtsson, L. Ammonia and nitrous oxide emissions from grass and alfalfa mulches. Nutr. Cycl. Agroecosyst. 1998, 51, 41–46. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, L.; Luo, S.; Bu, L.; Chen, X.; Yue, S.; Li, S. Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland. Agric. Ecosyst. Environ. 2014, 188, 20–28. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Bohra, J.S. Greenhouse gas emissions from rice crop with different tillage permutations in ricewheat system. Agric. Ecosyst. Environ. 2012, 159, 133–144. [Google Scholar] [CrossRef]
- Gong, Y.; Li, P.; Sakagami, N.; Komatsuzaki, M. No-tillage with rye cover crop can reduce net global warming potential and yield-scaled global warming potential in the long-term organic soybean field. Soil Tillage Res. 2021, 205, 104747. [Google Scholar] [CrossRef]
- Hanaki, M.; Ito, T.; Saigusa, M. Effect of no-tillage rice (Oryza sativa L.) cultivation on methane emission in three paddy fields of different soil types with rice straw application. Jpn. J. Soil Sci. Plant Nutr. 2002, 73, 135–143. [Google Scholar]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Van Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.A.; Linquist, B.; van Groenigen, K.J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Chang. Biol. 2012, 19, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Dendooven, L.; Gutierrez-Oliva, V.F.; Patino-Zuniga, L.; Ramirez-Villanueva, D.A.; Verhulst, N.; Luna-Guido, M.; Marsch, R.; Montes-Molina, J.; Gutierrez-Miceli, F.A.; Vasquez-Murrieta, S. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico. Sci. Total Environ. 2012, 431, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Angle, J.S.; Gross, C.M.; Hill, R.L.; Mcintosh, M.S. Soil Nitrate Concentrations under Corn as Affected by Tillage, Manure, and Fertilizer Applications. J. Environ.Qual. 1993, 22, 141–147. [Google Scholar] [CrossRef]
- Palma, R.M.; Saubidet, M.I.; Rimolo, M.; Utsumi, J. Nitrogen losses by volatilization in a corn crop with two tillage systems in the Argentine Pampa. Commun. Soil Sci. Plant Anal. 1998, 29, 2865–2879. [Google Scholar] [CrossRef]
- Johnson, J.; Hough-Goldstein, J.; Vangessel, M. Effects of straw mulch on pest insects, predators, and weeds in watermelons and potatoes. Environ. Entomol. 2004, 33, 1632–1643. [Google Scholar] [CrossRef]
- Brandsæter, L.; Netland, J.; Meadow, R. Yields, weeds, pests and soil nitrogen in a white cabbage-living mulch system. Biol. Agric. Hortic. 1998, 16, 291–309. [Google Scholar] [CrossRef]
- Silva-Filho, R.; Santos, R.H.S.; Tavares, W.d.S.; Leite, G.L.D.; Wilcken, C.F.; Serrao, J.E.; Zanuncio, J.C. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants. PLoS ONE 2014, 9, e94174. [Google Scholar] [CrossRef] [Green Version]
- Eden, G.R.S.M. The impact of organic amendments, mulching and tillage on plant nutrition, Pythium root rot, root-knot nematode and other pests and diseases of capsicum in a subtropical environment, and implications for the development of more sustainable vegetable farmin. Australas. Plant Pathol. 2008, 37, 123–131. [Google Scholar]
- MacLaren, C.; Labuschagne, J.; Swanepoel, P. Tillage practices affect weeds differently in monoculture vs. crop rotation. Soil Tillage Res. 2021, 205, 104795. [Google Scholar] [CrossRef]
- Erenstein, O. Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil Tillage Res. 2002, 67, 115–133. [Google Scholar] [CrossRef]
- Rahman, M.A.; Chikushi, J.; Saifizzaman, M.; Lauren, J.G. Rice straw mulching and nitrogen response of no-till wheat following rice in Bangladesh. Field Crops Res. 2005, 91, 71–81. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Muchaonyerwa, P.; Mnkeni, P.N.S. Mulch effects on soil moisture and nitrogen, weed growth and irrigated maize productivity in a warm-temperate climate of South Africa. Soil Tillage Res. 2011, 112, 58–65. [Google Scholar] [CrossRef]
- Ilnicki, R.D.; Enache, A.J. Subterranean clover living mulch: An alternative method of weed control. Agric. Ecosyst. Environ. 1992, 40, 249–264. [Google Scholar] [CrossRef]
- Döring, T.F.; Brandt, M.; Heß, J.; Finckh, M.R.; Saucke, H. Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Res. 2005, 94, 238–249. [Google Scholar] [CrossRef]
- Sharma, P.K.; Acharya, C.L. Carry-over of residual soil moisture with mulching and conservation tillage practices for sowing of rainfed wheat (Triticum aestivum L.) in north-west India. Soil Tillage Res. 2000, 57, 43–52. [Google Scholar] [CrossRef]
- Liu, C.; Jin, S.; Zhou, L.; Jia, Y.; Li, F.; Xiong, Y.; Li, X. Effects of plastic film mulch and tillage on maize productivity and soil parameters. Eur. J. Agron. 2009, 31, 241–249. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordan, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerda, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.H.; Yue, B.J.; Wang, L.; Fang, N.F.; Wang, D.; Wu, F.Z. Effects of Mulch Cover Rate on Interrill Erosion Processes and the Size Selectivity of Eroded Sediment on Steep Slopes. Soilence Soc. Am. J. 2013, 77, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Zhang, T.; Li, Z.; Li, P.; Cheng, Y.; Cheng, S. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau, China. Catena 2017, 158, 20–29. [Google Scholar] [CrossRef]
- Zhao, B.; Li, Z.; Li, P.; Xu, G.; Gao, H.; Cheng, Y.; Chang, E.; Yuan, S.; Zhang, Y.; Feng, Z. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma 2017, 296, 10–17. [Google Scholar] [CrossRef]
- Favaretto, N.; Cherobim, V.F.; de Medeiros Silveira, F.; Timofiecsyk, A.; Skalitz, R.; Barth, G.; Pauletti, V.; Dieckow, J.; Vezzani, F.M. Can application of liquid dairy manure onto no-tillage oxisols reduce runoff, sediment, phosphorus, and nitrogen losses over 9 years of natural rainfall? Geoderma 2022, 405, 115406. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Bu, L.D.; Liu, J.L.; Zhu, L.; Luo, S.S.; Chen, X.P.; Li, S.Q.; Lee Hill, R.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Zhou, L.-M.; Li, F.-M.; Jin, S.-L.; Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Jia, Y.; Li, F.M.; Wang, X.L.; Yang, S.M. Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment. Field Crops Res. 2006, 97, 167–175. [Google Scholar] [CrossRef]
- Arora, V.K.; Singh, C.B.; Sidhu, A.S.; Thind, S.S. Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture. Agric. Water Manag. 2011, 98, 563–568. [Google Scholar] [CrossRef]
- Kar, G.; Kumar, A. Effects of irrigation and straw mulch on water use and tuber yield of potato in eastern India. Agric. Water Manag. 2007, 94, 109–116. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, F.M.; Jia, Y.; Shi, W.Q. Increasing potato yields with additional water and increased soil temperature. Agric. Water Manag. 2005, 78, 181–194. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The Effects of Mulch and Nitrogen Fertilizer on the Soil Environment of Crop Plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar]
- Verhulst, N.; Kienle, F.; Sayre, K.D.; Deckers, J.; Raes, D.; Limon-Ortega, A.; Tijerina-Chavez, L.; Govaerts, B. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil 2011, 340, 453–466. [Google Scholar] [CrossRef]
- Cantero-Martínez, C.; Angás, P.; Lampurlanés, J. Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Ann. Appl. Biol. 2010, 150, 293–305. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T. Effect of tillage systems on soil moisture, soil temperature, soil respiration and production of wheat, maize and soybean crops. J. Food Agric. Environ. 2012, 10, 445–448. [Google Scholar]
- Chen, H.L.; Liu, G.S.; Yang, Y.F.; Chang, Y.M.; Zhao, L.L. Effects of rotten wheat straw on organic carbon and microbial biomass carbon of tobacco-planted soil. J. Food Agric. Environ. 2013, 11, 1017–1021. [Google Scholar]
- Tan, C.S.; Drury, C.F.; Gaynor, J.D.; Welacky, T.W.; Reynolds, W.D. Effect of tillage and water table control on evapotranspiration, surface runoff, tile drainage and soil water content under maize on a clay loam soil. Agric. Water Manag. 2002, 54, 173–188. [Google Scholar] [CrossRef]
- Qin, J.; Hu, F.; Zhang, B.; Wei, Z.; Li, H. Role of straw mulching in non-continuously flooded rice cultivation. Agric. Water Manag. 2006, 83, 252–260. [Google Scholar] [CrossRef]
- Fang, H.; Li, Y.; Gu, X.; Li, Y.; Chen, P. Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China? Agric. Water Manag. 2021, 246, 106686. [Google Scholar] [CrossRef]
- Yi, L.; Yang, S.; Li, S.; Chen, X.; Fang, C. Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency. Agric. For. Meteorol. 2010, 150, 606–613. [Google Scholar] [CrossRef]
- Kesik, T.; Błazewicz-Woźniak, M.; Wach, D. Influence of conservation tillage in onion production on the soil organic matter content and soil aggregate formation. Int. Agrophys. 2010, 24, 267–273. [Google Scholar]
- Arvidsson, J.; Etana, A.; Rydberg, T. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983–2012. Eur. J. Agron. 2014, 52, 307–315. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Langhans, C.; Clymans, W.; Vanuytrecht, E.; Merckx, R.; Raes, D. Soil functioning and conservation tillage in the Belgian Loam Belt. Soil Tillage Res. 2012, 122, 1–11. [Google Scholar] [CrossRef]
- Mcmaster, G.S.; Palic, D.; Dunn, G.H. Soil management alters seedling emergence and subsequent autumn growth and yield in dryland winter wheat–fallow systems in the Central Great Plains on a clay loam soil. Soil Tillage Res. 2002, 65, 193–206. [Google Scholar] [CrossRef]
- Rockström, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.; Temesgen, M.; Mawenya, L.; Barron, J.; Mutua, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Tillage Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Allen, F.L.; Saxton, A.M.; Tyler, D.D. Long-term corn yield impacted by cropping rotations and bio-covers under no-tillage. Agron. J. 2016, 108, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Mao, A.; Yang, H.; Wang, T.; Dou, Y.; Wang, Z.; Malhi, S. Summer fallow straw mulching and reducing nitrogen fertilization: A promising practice to alleviate environmental risk while increasing yield and economic profits of dryland wheat production. Eur. J. Agron. 2022, 133, 126440. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.P.; Liebhard, P.; Wagentristl, H. Winter Wheat Yields in a Long-Term Tillage Experiment under Pannonian Climate Conditions. Plant Soil Environ. 2015, 61, 145–150. [Google Scholar]
- Huang, T.; Yang, N.; Lu, C.; Qin, X.; Siddique, K.H. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Desta, B.T.; Gezahegn, A.M.; Tesema, S.E. Impacts of tillage practice on the productivity of durum wheat in Ethiopia. Cogent Food Agric. 2021, 7, 1869382. [Google Scholar] [CrossRef]
- Van Ittersum, M.K. Crop Yields and Global Food Security. Will Yield Increase Continue to Feed the World? Eur. Rev. Agric. Econ. 2016, 43, 191–192. [Google Scholar] [CrossRef] [Green Version]
Mulching | No-Mulching | |||
---|---|---|---|---|
Rice | y = 0.035x + 5.0969 | R2 = 0.4863 | y = 0.0318x + 4.924 | R2 = 0.2788 |
Maize | y = 0.0489x + 8.2747 | R2 = 0.4304 | y = 0.0557x + 5.0969 | R2 = 7.0112 |
Wheat | y = 0.0635x + 2.8018 | R2 = 0.6877 | y = 0.0352x + 6.2532 | R2 = 0.4121 |
Mulching | No-Mulching | |||
---|---|---|---|---|
Rice | y = 14.598x + 5437.9 | R2 = 0.4729 | y = 13.585x + 4964.8 | R2 = 0.4152 |
Maize | y = 19.313x + 4481.6 | R2 = 0.5481 | y = 18.736x + 3221.9 | R2 = 0.5019 |
Wheat | y = 15.334x + 2198.3 | R2 = 0.4278 | y = 11.34x + 2514.2 | R2 = 0.3435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Li, L.; Effah, Z. Effects of Straw Mulching and Reduced Tillage on Crop Production and Environment: A Review. Water 2022, 14, 2471. https://doi.org/10.3390/w14162471
Du C, Li L, Effah Z. Effects of Straw Mulching and Reduced Tillage on Crop Production and Environment: A Review. Water. 2022; 14(16):2471. https://doi.org/10.3390/w14162471
Chicago/Turabian StyleDu, Changliang, Lingling Li, and Zechariah Effah. 2022. "Effects of Straw Mulching and Reduced Tillage on Crop Production and Environment: A Review" Water 14, no. 16: 2471. https://doi.org/10.3390/w14162471