Using UAV Visible Images to Estimate the Soil Moisture of Steppe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Design
2.3. Sample Setting and Measurement of Soil Moisture
2.4. Processing of UAV Visible Images
2.5. Control of Influencing Factors and Correction of Errors
2.6. Data Analysis
2.6.1. Data Analysis of Brightness
- (a)
- The UAV visible image was cropped into three parts according to the different soil moistures (Figure 4b), then we put them into ImageJ for processing. Firstly, the visible images were converted to 8-bit grayscale images. A grayscale image has 256 levels of brightness, where 0 represents the darkest and 255 represents the brightest. To significantly layer the brightness of the grayscale images, a spectral filter was added to the grayscale images, and thereby we divided the 256 levels of brightness into seven colors roughly. The definition from dark to bright was red, orange, yellow, green, cyan, blue, and purple. The brightness gradually increased from left to right (Figure 4b). The brightness of the vegetation is lower than that of the soil, and the lower the 0–10 cm soil moisture was, the more obvious the brightness contrast was.
- (b)
- To intuitively compare the differences in brightness, 3D Surface Plot was used to convert the brightness into height information, transforming the concept of dark to bright into deep to shallow (Figure 4c).
- (c)
- Finally, the histograms were output. In these histograms, “Mean” refers to the brightness that we talked about. According to Figure 4d, 22.1%, 14.1%, and 4.6% of the 0–10 cm soil moisture corresponded to brightnesses of 100.57, 117.05, and 130.628 cd/m2, respectively. The differences in soil moisture at 0–10 cm were reflected in the brightness of the UAV visible images.
2.6.2. Data Analysis of Vegetation Coverage
2.7. Data Analysis of Verification Quadrats
3. Results
3.1. Estimation of 0–10 cm Soil Moisture by UAV
3.2. Practical Verification of Estimation Models of 0–10 cm Soil Moisture
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dixon, A.P.; Faber-Langendoen, D.; Josse, C.; Morrison, J.; Loucks, C.J. Distribution mapping of world grassland types. J. Biogeogr. 2014, 41, 2003–2019. [Google Scholar] [CrossRef]
- Liang, T.G.; Feng, Q.S.; Huang, X.D.; Ren, J.Z. Review in the study of comprehensive sequential classification system of grassland. Acta Agrestia. Sin. 2008, 1, 4–10. [Google Scholar]
- Nandintsetseg, B.; Shinoda, M. Multi-Decadal Soil Moisture Trends in Mongolia and Their Relationships to Precipitation and Evapotranspiration. Arid. Land Res. Manag. 2014, 28, 247–260. [Google Scholar] [CrossRef]
- Nemtsev, S.N.; Kuzina, E.V. Soil protective moisture- and resource-saving tillage methods when growing spring wheat in the forest steppe of the Ulyanovsk Region. Russ. Agric. Sci. 2011, 37, 327–329. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Wang, X.X.; Chen, L.; Zhou, C. Research on Soil Moisture and Nutrients in Different Steppe Ecosystems. Adv. Mater. Res. 2014, 955, 3705–3708. [Google Scholar] [CrossRef]
- Lin, Y.; Hong, M.; Han, G.; Zhao, M.-L.; Bai, Y.; Chang, S. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agric. Ecosyst. Environ. 2010, 138, 282–292. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Ketzer, B.; Horn, R.; Bernhofer, C. Effect of grazing intensity on evapotranspiration in the semiarid grasslands of Inner Mongolia, China. J. Arid. Environ. 2012, 83, 15–24. [Google Scholar] [CrossRef]
- Bobrov, P.P.; Belyaeva, T.A.; Kroshka, E.S.; Rodionova, O.V. Soil Moisture Measurement by the Dielectric Method. Eurasian Soil Sci. 2019, 52, 822–833. [Google Scholar] [CrossRef]
- Felipe, C.M. A New TDR-Waveform Approach Capable to Measure Soil Moisture Contents at Large Electrical Conductivity Ranges. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 17 December 2014. [Google Scholar]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Fu, J.; Pang, Z.; Lu, J.; Li, L.; Lei, T.; Qu, W.; Li, X. Validation of Soil Moisture Retrieval in Desert Steppe Area. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7097–7100. [Google Scholar] [CrossRef]
- Van Iersel, W.; Straatsma, M.W.; Middelkoop, H.; Addink, E.A. Multitemporal Classification of River Floodplain Vegetation Using Time Series of UAV Images. Remote Sens. 2018, 10, 1144. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.R.; Han, T.H.; Sun, B. Application of UAV remote sensing in grassland ecology research. China Herbiv. Sci. 2019, 39, 57–59. [Google Scholar]
- Emile, F.; François, R.; Danilo, Y.C.; Sophie, C.F.; Olivier, D. A toolbox for studying thermal heterogeneity across spatial scales: From unmanned aerial vehicle imagery to landscape metrics. Methods Ecol. Evol. 2016, 7, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Cunliffe, A.M.; Brazier, R.; Anderson, K. Ultra-Fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Dandois, J.P.; Baker, M.E.; Olano, M.; Parker, G.G.; Ellis, E.C. What is the Point? Evaluating the Structure, Color, and Semantic Traits of Computer Vision Point Clouds of Vegetation. Remote Sens. 2017, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Husson, E.; Reese, H.; Ecke, F. Combining Spectral Data and a DSM from UAS-Images for Improved Classification of Non-Submerged Aquatic Vegetation. Remote Sens. 2017, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, J.; Hu, B.; Zhang, J. Unmanned Aerial Vehicle remote sensing in ecology: Advances and prospects. Acta Ecol. Sin. 2018, 38, 20–30. [Google Scholar] [CrossRef]
- Dandois, J.P.; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 2013, 136, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Zahawi, R.A.; Dandois, J.P.; Holl, K.D.; Nadwodny, D.; Reid, J.L.; Ellis, E.C. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Boil. Conserv. 2015, 186, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Gui, Y.; Hong, L.; Zhen, L.; Hai, F.; Lei, W.; Jin, D.; Peng, H. Winter wheat LAI estimation using unmanned aerial vehicle RGB-imaging. Chin. J. Ecoagric. 2016, 24, 1254–1264. [Google Scholar] [CrossRef]
- Han, D.; Wang, H.; Zheng, B.; Wang, F. Vegetation type classification and fractional vegetation coverage estimation for an open elm (Ulmus pumila) woodland ecosystem during a growing season based on an unmanned aerial vehicle platform coupled with decision tree algorithms. Acta Ecol. Sin. 2018, 38, 6655–6663. [Google Scholar] [CrossRef]
- Song, Q.J.; Cui, X.; Zhang, Y.Y. Grassland fractional vegetation cover analysis using small UVAs and MODIS—A case study in Gannan Prefecture. Pratac. Sci. 2017, 34, 40–50. [Google Scholar]
- Liu, Y.H.; Cai, Z.L.; Bao, N.S. Research of Grassland Vegetation Coverage and Biomass Estimation Method Based on Major Quadrat from UAV Photogrammetry. Ecol. Environ. 2018, 27, 2023–2032. [Google Scholar]
- Bo, S. Preliminary Study on the Distribution Trend of Relative Grazing Intensity by UAV Technology Monitoring. Master’s Thesis, Lanzhou University, Lanzhou, China, 2019. [Google Scholar]
- Zhao, X.Q. Digital detection of rat holes in Inner Mongolia grassland based on remote sensing data of UAV. In Proceedings of the 4th China Grass Industry Congress, Xining, China, 19–23 August 2016. [Google Scholar]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estiation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chang, J.-X.; Zhang, L.; Wang, Y.-M.; Li, Y.; Wang, X. NDVI dynamic changes and their relationship with meteorological factors and soil moisture. Environ. Earth Sci. 2018, 77, 582. [Google Scholar] [CrossRef]
- Lu, Y.; Horton, R.; Zhang, X.; Ren, T. Accounting for soil porosity improves a thermal inertia model for estimating surface soil water content. Remote Sens. Environ. 2018, 212, 79–89. [Google Scholar] [CrossRef]
- Mustafa, Ü.; Rıza, K.; Burçak, K. The Crop Water Stress Index (CWSI) for Drip Irrigated Cotton in a Semi-Arid Region of Turkey. Afr. J. Biotechnol. 2011, 10, 2258–2273. [Google Scholar] [CrossRef]
- Wang, H.; He, N.; Zhao, R.; Ma, X. Soil water content monitoring using joint application of PDI and TVDI drought indices. Remote Sens. Lett. 2020, 11, 455–464. [Google Scholar] [CrossRef]
- Sabaghy, S.; Walker, J.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 2018, 209, 551–580. [Google Scholar] [CrossRef]
- Putra, A.N.; Nita, I. Reliability of using high-resolution aerial photography (red, green and blue bands) for detecting available soil water in agricultural land. J. Degraded Min. Lands Manag. 2020, 7, 2221–2232. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, S.S.; Cecílio, R.A.; Alves, E.G.; Silva, V.H.; Sousa, E.F. Estimation of the moisture content of tropical soils using colour images and artificial neural networks. Catena 2015, 135, 100–106. [Google Scholar] [CrossRef]
- Dos Santos, J.F.C.; Silva, H.R.F.; Assis, I.R.; Pinto, F.D.A.C. Use of digital images to estimate soil moisture. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 1051–1056. [Google Scholar] [CrossRef]
- Yin, Z.; Lei, T.; Yan, Q.; Chen, Z.; Dong, Y. A near-infrared reflectance sensor for soil surface moisture measurement. Comput. Electron. Agric. 2013, 99, 101–107. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhang, X.-L.; Zhang, B.; Song, K.-S.; Wang, Z.; Tang, N. Quantitative Analysis of Moisture Effect on Black Soil Reflectance. Pedosphere 2009, 19, 532–540. [Google Scholar] [CrossRef]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: Satellite data analysis. Remote Sens. Environ. 2016, 173, 1–14. [Google Scholar] [CrossRef]
- Zhu, Y.; Weindorf, D.C.; Chakraborty, S.; Haggard, B.; Johnson, S.; Bakr, N. Characterizing surface soil water with field portable diffuse reflectance spectroscopy. J. Hydrol. 2010, 391, 133–140. [Google Scholar] [CrossRef]
- Meng, Z.; Dang, X.; Gao, Y.; Ren, X.; Ding, Y.; Wang, M. Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China. J. Arid. Land 2018, 10, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhou, G. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Boil. 2011, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hou, F.; Angerer, J.P.; Yi, S. Effects of topography and land-use patterns on the spatial heterogeneity of terracette landscapes in the Loess Plateau, China. Ecol. Indic. 2020, 109, 109. [Google Scholar] [CrossRef]
- Xu, J.X. Precipitation–Vegetation coupling and its influence on erosion on the Loess Plateau, China. Catena 2005, 64, 103–116. [Google Scholar] [CrossRef]
- Hou, F.J.; Nan, Z.B.; Xie, Y.Z.; Li, X.L.; Lin, H.L.; Ren, J.Z. Integrated crop-livestock production systems in China. Rangel. J. 2008, 30, 221–231. [Google Scholar] [CrossRef]
- Hu, A.; Chen, H.; Chen, X.J.; Hou, F.J. Loess Plateau farmland and grassland soil seed bank. Pratac. Sci. 2015, 32, 1035–1040. [Google Scholar]
- Yang, H.L.; Chen, X.J.; Hou, F.J. Greenhouse gas emission from grassland and livestock manure in longdong Loess Plateau in summer. Pratac. Sci. 2016, 33, 1454–1459. [Google Scholar]
- Wang, H.M.; Shi, P. Methods to Extract Images Texture Features. J. Commun. Univ. China Sci. Technol. 2006, 13, 49–52. [Google Scholar]
- Yi, S. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. Int. J. Remote Sens. 2016, 38, 2686–2697. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F.; Luo, D.; Hu, J.; Zhou, Z. Quantifying the dynamics of livestock distribution by unmanned aerial vehicles (UAVs): A case study of yak grazing at the household scale. Rangel. Ecol. Manag. 2020. [Google Scholar] [CrossRef]
- Shoshany, M.; Spond, H.; Bar, D.E. Overcast versus clear-sky remote sensing: Comparing surface reflectance estimates. Int. J. Remote Sens. 2019, 40, 6737–6751. [Google Scholar] [CrossRef]
- Lele, Z.; Lin, Z.; Ren, L.; Li, G.; Yao, X.; Yong, Q.; Jian, S. Influence of soil moisture on surface albedo and soil thermal parameters in tanggula region of Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2016, 38, 351–358. [Google Scholar]
- Wang, S.Y.; Zhang, Y.; Lyu, S.H.; Shang, L.Y.; Su, Y.Q.; Zhu, H.H. Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau. Sci. Cold Arid Reg. 2017, 9, 142–150. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, Q.; Tao, J.; Chi, W. Intra-Annual variability of satellite observed surface albedo associated with typical land cover types in China. J. Geogr. Sci. 2014, 25, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Li, W.; Liu, X.; Li, W. An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France. Chin. Sci. Bull. 2014, 59, 4881–4889. [Google Scholar] [CrossRef]
- Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; Colombo, R.; Miglietta, F.; Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sens. 2020, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Park, S.S.; Jung, Y.; Lee, Y.G. Spectral dependence on the correction factor of erythemal UV for cloud, aerosol, total ozone, and surface properties: A modeling study. Adv. Atmos. Sci. 2016, 33, 865–874. [Google Scholar] [CrossRef]
- Liu, H.W. Advances in analytical models for simulating reflection, refraction and diffraction of water waves. J. Guangxi Univ. Natl. Nat. Sci. Ed. 2004, 10, 73–78. [Google Scholar]
- Chan, C.K.; Liang, N.Y.; Liu, W.C. Measurement of the shape of a liquid-liquid interface by the method of light reflection. Rev. Sci. Instrum. 1993, 64, 632–637. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
image sensor | 1-inch CMOS | aperture | f/2.8 |
lens angel | FOV 94° 20 mm | ISO | 200 |
photo size | 4864 × 3648 pixels | shutter speed | 1/320 s |
Index | 0–10 cm Soil Moisture | Brightness | Vegetation Coverage |
---|---|---|---|
0–10 cm soil moisture | - | −0.6 *** | 0.434 *** |
Brightness | −0.787 *** | - | 0.232 * |
Vegetation coverage | −0.024 | 0.092 | - |
Application Condition | Prediction Model | R2 | Sig |
---|---|---|---|
0–10 cm soil moisture > stable value | Y = 70.52 − 0.47X1 | 0.77 | <0.001 |
0–10 cm soil moisture = stable value | Y = 23.39 − 0.2X1 + 0.07X2 | 0.86 | <0.001 |
0 Sheep/Ha | 2.67 Sheep/Ha | 5.33 Sheep/Ha | 8.67 Sheep/Ha | |
---|---|---|---|---|
June | 5.66 ± 0.08 a | 5.41 ± 0.13 a | 4.23 ± 0.1 b | 3.7 ± 0.4 c |
July | 6.68 ± 0.63 a | 5.81 ± 0.42 a | 4.64 ± 0.4 b | 4.52 ± 0.48 b |
August | 6.29 ± 1.01 a | 5.45 ± 0.23 a | 3.74 ± 0.92 b | 3.08 ± 0.14 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Sun, Y.; Hou, F. Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water 2020, 12, 2334. https://doi.org/10.3390/w12092334
Lu F, Sun Y, Hou F. Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water. 2020; 12(9):2334. https://doi.org/10.3390/w12092334
Chicago/Turabian StyleLu, Fengshuai, Yi Sun, and Fujiang Hou. 2020. "Using UAV Visible Images to Estimate the Soil Moisture of Steppe" Water 12, no. 9: 2334. https://doi.org/10.3390/w12092334
APA StyleLu, F., Sun, Y., & Hou, F. (2020). Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water, 12(9), 2334. https://doi.org/10.3390/w12092334