Adaptation Tipping Points of a Wetland under a Drying Climate
Abstract
:1. Introduction
- hydrological response and variation;
- temporal scale ecosystem responses; and,
- recovery rate or alternative stable state of ecological processes.
2. Method
2.1. Case Study Area
2.2. Data Collection and Analyses
2.2.1. Step 1: Legislative Framework and Impacts of Climate Change–Literature Review
2.2.2. Step 2: Select Objectives and Quantify Threshold Values–Literature Review
- i
- Water depth may reach levels that are too low to:
- maintain sediment processes;
- provide habitat needed by waterbirds, frogs, freshwater turtles, and macro-invertebrates for survival and reproduction;
- inhibit the growth of mosquitoes and midges.
- ii
- Water depth may reach levels that are too low or too high, such that they lead to:
- the death of phreatophytic (i.e., groundwater dependent) and fringing vegetation;
- the compromise of the habitat needed for terrestrial birds and mammals; and,
- increased weed invasion and compromise the habitat needed for wading birds.
- the local government (city council, responsible for land division and drainage);
- the State Department of Parks and Wildlife (conservation authority);
- the Department of Water (water regulator, responsible for ground- and surface water allocation and monitoring); and,
- community and local conservation groups (community, involved in monitoring birds, revegetation and rehabilitation of the wetland buffer zone).
2.2.3. Step 3: Determine ATPs—Statistical Analyses
3. Results
3.1. Legislative Framework across Scales
3.2. ATPs and Ecological Resilience
3.3. ATP Assessment and Alternate System States
4. Discussion
4.1. Temporal and Spatial Hydrological Responses in Atp Analysis Applied to Ecosystems
- decreasing numbers of birds from over 20.000 birds in the 1980s to just over 10.000 birds in 2009 [79].
4.2. Informing Ecosystem Management
4.3. Adapting Management Strategies
5. Conclusions
Supplementary Materials
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 2004, 557–581. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for models of socio-hydrology: Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18, 2141–2166. [Google Scholar] [CrossRef] [Green Version]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.; Meyers, J.A. Thresholds in ecological and social–ecological systems: A developing database. Ecol. Soc. 2004, 9, 3. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.; Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 2004, 9. [Google Scholar] [CrossRef]
- Rijke, J.; Brown, R.; Zevenbergen, C.; Ashley, R.; Farrelly, M.; Morison, P.; van Herk, S. Fit-for-purpose governance: A framework to make adaptive governance operational. Environ. Sci. Policy 2012, 22, 73–84. [Google Scholar] [CrossRef]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485–498. [Google Scholar] [CrossRef]
- Werners, S.; Pfenninger, S.; van Slobbe, E.; Haasnoot, M.; Kwakkel, J.; Swart, R. Thresholds, tipping and turning points for sustainability under climate change. Curr. Opin. Environ. Sustain. 2013, 5, 334–340. [Google Scholar] [CrossRef]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef]
- Schlueter, M.; McAllister, R.; Arlinghaus, R.; Bunnefeld, N.; Eisenack, K.; Hoelker, F.; Milner-Gulland, E.; Müller, B.; Nicholson, E.; Quaas, M. New horizons for managing the environment: A review of coupled social-ecological systems modeling. Nat. Resour. Model. 2012, 25, 219–272. [Google Scholar] [CrossRef]
- Niemi, G.J.; McDonald, M.E. Application of ecological indicators. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 89–111. [Google Scholar] [CrossRef]
- Lavery, S.; Donovan, B. Flood risk management in the thames estuary looking ahead 100 years. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2005, 363, 1455–1474. [Google Scholar] [CrossRef] [PubMed]
- Kwadijk, J.; Haasnoot, M.; Mulder, J.; Hoogvliet, M.; Jeuken, A.; van der Krogt, R.; van Oostrom, N.; Schelfhout, H.; van Velzen, E.; van Waveren, H.; et al. Using adaptation tipping points to prepare for climate change and sea level rise: A case study in the netherlands. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 729–740. [Google Scholar] [CrossRef]
- Reeder, T.; Ranger, N. How do You Adapt in an Uncertain World? Lessons from the Thames Estuary 2100 Project; World Resources Report Uncertainty Series; World Resources Institute: Washington, DC, USA, 2011. [Google Scholar]
- Gersonius, B.; Ashley, R.; Pathirana, A.; Zevenbergen, C. Climate change uncertainty: Building flexibility into water and flood risk infrastructure. Clim. Chang. 2012, 116, 413–423. [Google Scholar] [CrossRef]
- Brown, C.; Werick, W.; Leger, W.; Fay, D. A decision-analytic approach to managing climate risks: Application to the upper great lakes1. J. Am. Water Resour. Assoc. 2011, 47, 524–534. [Google Scholar] [CrossRef]
- Poff, N.L.; Brown, C.M.; Grantham, T.E.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Chang. 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, J.; Sullivan, F.; Lash, A.; Ide, G.; Cameron, C.; McGlinchey, L. Adapting to changing climate risk by local government in new zealand: Institutional practice barriers and enablers. Local Environ. 2013, 20, 298–320. [Google Scholar] [CrossRef]
- Fünfgeld, H. Facilitating local climate change adaptation through transnational municipal networks. Curr. Opin. Environ. Sustain. 2015, 12, 67–73. [Google Scholar] [CrossRef]
- Hanger, S.; Pfenninger, S.; Dreyfus, M.; Patt, A. Knowledge and information needs of adaptation policy-makers: A european study. Reg. Environ. Chang. 2013, 13, 91–101. [Google Scholar] [CrossRef]
- van Slobbe, E.; Werners, S.E.; Riquelme-Solar, M.; Bölscher, T.; van Vliet, M.T.H. The future of the rhine: Stranded ships and no more salmon? Reg. Environ. Chang. 2016, 16, 31–41. [Google Scholar] [CrossRef]
- Werners, S.; Swart, R.; van Slobbe, E.; Bölscher, T. Turning points in climate change adaptation. Glob. Environ. Chang. 2013, 16, 253–267. [Google Scholar]
- Bölscher, T.; van Slobbe, E.; van Vliet, M.T.; Werners, S.E. Adaptation turning points in river restoration? The rhine salmon case. Sustainability 2013, 5, 2288–2304. [Google Scholar] [CrossRef]
- Wardekker, J.A.; de Jong, A.; Knoop, J.M.; van der Sluijs, J.P. Operationalising a resilience approach to adapting an urban delta to uncertain climate changes. Technol. Forecast. Soc. Chang. 2010, 77, 987–998. [Google Scholar] [CrossRef]
- Haasnoot, M.; Middelkoop, H.; Offermans, A.; Beek, E.V.; Deursen, W.P.A.V. Exploring pathways for sustainable water management in river deltas in a changing environment. Clim. Chang. 2012, 115, 795–819. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Bekle, H.; Gentilli, J. History of the perth lakes. R. West. Aust. Hist. Soc. 1993, 10, 441–460. [Google Scholar]
- Bekle, H. The Wetlands Lost: Drainage of the Perth Lake Systems; Geographical Society of W.A.: Perth, Australia, 1981.
- Balla, S.A. Wetlands of the Swan Coastal Plain. Volume 1, Their Nature and Management; Water Authority of WA: Perth, Australia, 1993.
- Conservation Commission of Western Australia. Forrestdale Lake Nature Reserve Management Plan 2005; Management Plan No. 53; Conservation Commission of Western Australia; Government of Western Australia: Perth, Australia, 2005.
- Storey, A.W.; Vervest, R.M.; Pearson, G.B.; Halse, S.A. Wetlands of the Swan Coastal Plain, Volume 7, Waterbird Usage of Wetlands on the Swan Coastal Plain; Water Authority of WA: Perth, Australia, 1993.
- Davis, J.A.; Froend, R. Loss and degradation of wetlands in southwestern australia: Underlying causes, consequences and solutions. Wetl. Ecol. Manag. 1999, 7, 13–23. [Google Scholar] [CrossRef]
- Barron, O.; Barr, A.; Donn, M. Effect of urbanisation on the water balance of a catchment with shallow groundwater. J. Hydrol. 2013, 485, 162–176. [Google Scholar] [CrossRef]
- Department of Water (Ed.) Assessment of the Declining Groundwater Levels in the Gnangara Groundwater Mound, Report hg14; Hydrogeological Record Series; Department of Water: Perth, Australia, 2008.
- Eamus, D.; Froend, R. Groundwater-dependent ecosystems: The where, what and why of gdes. Aust. J. Bot. 2006, 54, 91–96. [Google Scholar] [CrossRef]
- Barron, O.; Froend, R.; Hodgson, G.; Ali, R.; Dawes, W.; Davies, P.; McFarlane, D. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the central perth basin, western australia. Hydrol. Process. 2013, 28, 5513–5529. [Google Scholar] [CrossRef]
- Charles, S.; Silberstein, R.; Teng, J.; Fu, G.; Hodgson, G.; Gabrovsek, C.; Crute, J. Climate Analyses for South-West Western Australia; A report to the Australian Government from the CSIRO South-West Western Australia Sustainable Yields Project; CSIRO: 92-92; CSIRO: Canberra, Australia, 2010.
- Petrone, K.C.; Hughes, J.D.; Van Niel, T.G.; Silberstein, R.P. Streamflow decline in southwestern australia, 1950–2008. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Smith, I.; Power, S. Past and future changes to inflows into perth (western australia) dams. J. Hydrol. Reg. Stud. 2014, 2, 84–96. [Google Scholar] [CrossRef]
- Froend, R.; Sommer, B. Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown: Examples of long-term spatial and temporal variability in community response. Ecol. Eng. 2010, 36, 1191–1200. [Google Scholar] [CrossRef]
- Froend, R.H.; Farrelly, C.F.; Wilkins, C.C.; McComb, A.J. Wetlands of the Swan Coastal Plain. Volume 4, the Effects of Altered Water Levels on Wetland Plants; Water Authority of WA: Perth, Australia, 1993.
- Ali, R.; McFarlane, D.; Varma, S.; Dawes, W.; Emelyanova, I.; Hodgson, G. Potential climate change impacts on the water balance of regional unconfined aquifer systems in south-western australia. Hydrol. Earth Syst. Sci. 2012, 16, 4581–4601. [Google Scholar] [CrossRef] [Green Version]
- Sommer, B.; Horwitz, P. Macroinvertebrate cycles of decline and recovery in swan coastal plain (western australia) wetlands affected by drought-induced acidification. Hydrobiologia 2009, 624, 191–203. [Google Scholar] [CrossRef]
- Sommer, B.; Froend, R. Resilience of phreatophytic vegetation to groundwater drawdown: Is recovery possible under a drying climate? Ecohydrology 2011, 4, 67–82. [Google Scholar] [CrossRef]
- Townley, L.; Turner, J.; Barr, A.D.; Trefry, M. Wetlands of the Swan Coastal Plain Volume 3: Interaction between Lakes, Wetlands and Unconfined Aquifers; Education Department of Western Australia: Perth, Australia, 1993. [Google Scholar]
- McFarlane, D. The Effect of Climate Change on South West WA Hydrology; CSIRO: Canberra, Australia, 2012.
- Australian Bureau of Statistics. 3105.0.65.001—Australian Historical Population Statistics. 2014. Available online: http://abs.gov.au/ausstats (accessed on 8 November 2016).
- Bureau of meteorology. Bureau of Meteorology, Monthly Rainfall Midland (Perth) 1886–2015, Station Number 9025. Available online: http://www.bom.gov.au/climate/data/index.shtml (accessed on 8 November 2016).
- Froend, R.; Loomes, R.; Horwitz, P.; Rogan, R.; Lavery, P.; How, J.; Storey, A.; Bamford, M.; Metcalf, B. Study of Ecological Water Requirements on the Gnangara and Jandakot Mounds under Section 46 of the Environmental Protection Act, Task 1: Identification and Re-Evaluation of Ecological Values Prepared for: The Water and Rivers Commission; Water and Rivers Commission, Ed.; Water and Rivers Commission: Perth, Australia, 2004.
- Eamus, D.; Froend, R.; Loomes, R.; Hose, G.; Murray, B. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Aust. J. Bot. 2006, 54, 97–114. [Google Scholar] [CrossRef]
- Environmental Protection Authority (Ed.) Jandakot Mound Groundwater Resources, Bulletin 1155; Environmental Protection Authority: Perth, Australia, 1992.
- Semeniuk, C.A. Wetlands of the darling system- a geomorphic approach to habitat classification. J. R. Soc. West Aust. 1987, 69, 95–112. [Google Scholar]
- Hill, A.L.; Australia, W.; Australia, W.; Water and Rivers Commission. Wetlands of the Swan Coastal Plain: Wetland Mapping, Classification and Evaluation, Main Report. Volume 2a; Water and Rivers Commission and Department of Environmental Protection: Leederville, WA, USA, 1996.
- Dawes, W.; Barron, O.; Donn, M.; Pollock, D.; Johnstone, C. Forrestdale Lake Water Balance; CSIRO Water for a Healthy Country National Research Flagship; CSIRO: Perth, Australia, 2009.
- Froend, R.; Loomes, R.; Horwitz, P.; Bertuch, M.; Storey, M.; Bamford, M. Study of Ecological Water Requirements on the Gnangara and Jandakot Mounds under Section 46 of the Environmental Protection Act, Task 2: Determination of Ecological Water Requirements; Water and Rivers Commission: Perth, Australia, 2004.
- Canham, C. The Response of Banksia Roots to Change in Water Table Level in a Mediterranean-Type Environment. Ph.D. Thesis, Edith Cowan University, Joondalup, Australia, 2011. [Google Scholar]
- Balla, S.; Davis, J. Seasonal variation in the macroinvertebrate fauna of wetlands of differing water regime and nutrient status on the swan coastal plain, western australia. Hydrobiologia 1995, 299, 147–161. [Google Scholar] [CrossRef]
- Dale, P.; Knight, J. Wetlands and mosquitoes: A review. Wetl. Ecol. Manag. 2008, 16, 255–276. [Google Scholar] [CrossRef]
- Department of Environment and Conservation (Ed.) Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes; Department of Environment and Conservation: Perth, Australia, 2011.
- Department of Water (Ed.) Water Information (Win) Database—Time-series Data Site ID 14578 and 12781400; Department of Water, Water Information Section: Perth, Australia, 2015.
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Environmental Protection Authority. Environmental protection act 1986; Environmental Protection Authority: Perth, Australia, 2003.
- Conservation and Land Management Act. In Conservation and Land Management Act 1984; Government of Western Australia 126 of 1984; State Law Publisher: Perth, Australia, 1984.
- Wildlife Conservation Act. Wildlife Conservation Act. Wildlife conservation act 1950. In Government of Western Australia 1950, 077 of 1950; (14 & 15 Geo. VI No. 77); State Law Publisher: Perth, Australia, 1950.
- Ramsar. The Convention on Wetlands Text, as Amended in 1982 and 1987: The List of Wetlands of International Importance; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2014; pp. 1–47. [Google Scholar]
- The Japan Australia Migratory Bird Agreement (JAMBA). Agreement between the government of australia and the government of japan for the protection of migratory birds in danger of extinction and their environment. In Australian Treaty Series; State Law Publisher: Perth, Australia, 1981; No. 6.
- The China Australia Migratory Bird Agreement (CAMBA). Agreement between the government of australia and the government of the people’s republic of china for the protection of migratory birds and their environment. In Australian Treaty Series; State Law Publisher: Perth, Australia, 1988.
- The Republic of Korea and Australia Migratory Bird Agreement (ROKAMBA). Agreement between the government of australia and the government of the republic of korea on the protection of migratory birds. In Australian Treaty Series; State Law Publisher: Perth, Australia, 2007.
- Environment Protection and Biodiversity Conservation (EBPC). In Environment Protection and Biodiversity Conservation Act 1999; State Law Publisher: Perth, Australia, 1999.
- Department of Water (Ed.) Environmental Management of Groundwater from the Jandakot Mound; Triennial Compliance Report to the Office of the Environmental Protection Authority; Department of Water, Government of Western Australia: Perth, Australia, 2012.
- Zevenbergen, C.; Veerbeek, W.; Gersonius, B.; Van Herk, S. Challenges in urban flood management: Travelling across spatial and temporal scales. J. Flood Risk Manag. 2008, 1, 81–88. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Kiem, A.S.; Moran, R. Links between the Big Dry in Australia and hemispheric multi-decadal climate variability. Hydrol. Earth Syst. Sci. 2014, 18, 2235–2256. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Brock, M. Detecting unacceptable change in the ecological character of ramsar wetlands. Ecol. Manag. Restor. 2008, 9, 26–32. [Google Scholar] [CrossRef]
- Maher, K.; Davis, J. Ecological Character Description for the Forrestdale and Thomsons Lakes Ramsar Site; a Report to the Department of Environment and Conservation; Murdoch University: Perth, Australia, 2009. [Google Scholar]
- Froend, R.; Rogan, R.; Loomes, R.; Horwitz, P.; Bamford, M.; Storey, A. Study of Ecological Water Requirements on the Gnangara and Jandakot Mounds under Section 46 of the Environmental Protection Act, Task 3 & 4: Parameter Identification and Monitoring Program Review; Water and Rivers Commission, Ed.; Water and Rivers Commission: Perth, Australia, 2004.
- Bamford, M.; Bancroft, W.; Raines, J. Effects of Remote Rainfall Events on Waterbird Populations on the Jandakot Mound Wetlands; Department of Water, by Bamford Consulting Ecologists: Perth, Australia, 2010.
- Capon, S.J.; Lynch, A.J.; Bond, N.; Chessman, B.C.; Davis, J.; Davidson, N.; Finlayson, M.; Gell, P.A.; Hohnberg, D.; Humphrey, C.; et al. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Sci. Total Environ. 2015, 534, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Sivapalan, M.; Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 2015, 51, 6988–7022. [Google Scholar] [CrossRef]
- Elshafei, Y.; Tonts, M.; Sivapalan, M.; Hipsey, M.R. Sensitivity of emergent sociohydrologic dynamics to internal system properties and external sociopolitical factors: Implications for water management. Water Resour. Res. 2016, 52, 4944–4966. [Google Scholar] [CrossRef]
- Ekstrom, J.; Young, O. Evaluating functional fit between a set of institutions and an ecosystem. Ecol. Soc. 2009, 14, 16. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Yan, K.; Brandimarte, L.; Blöschl, G. Debates-perspectives on sociohydrology: Capturing feedbacks between physical and social processes. Water Resour. Res. 2015, 51, 4770–4781. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Kooy, M.; Kemerink, J.S.; Brandimarte, L. Towards understanding the dynamic behaviour of floodplains as human-water systems. Hydrol. Earth Syst. Sci. 2013, 17, 3235–3244. [Google Scholar] [CrossRef]
- Hipsey, M.R.; Hamilton, D.P.; Hanson, P.C.; Carey, C.C.; Coletti, J.Z.; Read, J.S.; Ibelings, B.W.; Valesini, F.J.; Brookes, J.D. Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories. Water Resour. Res. 2015, 51, 7023–7043. [Google Scholar] [CrossRef]
- Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob.Environ. Chang. 2009, 19, 240–247. [Google Scholar] [CrossRef]
- Mitchell, B.; Hollick, M. Integrated catchment management in western australia: Transition from concept to implementation. Environ. Manag. 1993, 17, 735–743. [Google Scholar] [CrossRef]
- Davis, J.; O’Grady, A.P.; Dale, A.; Arthington, A.H.; Gell, P.A.; Driver, P.D.; Bond, N.; Casanova, M.; Finlayson, M.; Watts, R.J.; et al. When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 2015, 534, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to environmental change: Contributions of a resilience framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419. [Google Scholar] [CrossRef]
Ecological Objectives | Water Level (m) | Threshold Definition | Source |
---|---|---|---|
1. protect vegetation and mammals; definition of drought | SW < 0 | 3 consecutive months; 1 in 5 years | [33,54,58] |
2. prevent mosquitoes | SW < 0 | 1 month per year; 1 in 1 year | [33] |
3. protect waterbirds | SW < 0 | 6 consecutive months; 1 in 5 years | [33,54,60] |
4. protect frogs | SW < 0 | 8 months; 1 in 5 years | [58,59] |
5. protect tortoises | SW < 0 | 3 months; 1 in 5 years | [58,59] |
6. protect macro-invertebrates | SW < 0.4 | 3 consecutive months; 1 in 5 years | [58,59] |
7. prevent exposure of Acid Sulphate Soils | GW < −0.5 | 3 consecutive months; 1 in 5 years | [58] |
8. maintain sediment processes | GW < −0.5 | 3 consecutive months; 1 in 5 years | [58] |
Ecological Objective | Water Level (m) | ||
---|---|---|---|
Threshold | 1978–1995 | 1996–2012 | |
1. protect vegetation and mammals | SW < 0 | 0.06 | −0.21 |
2. prevent mosquitoes | SW > 0 | −0.27 | −0.19 |
3. protect waterbirds | SW < 0 | 0.24 | −0.16 |
4. protect frogs | SW < 0 | 0.42 | 0.01 |
5. protect tortoises | SW < 0 | 0.06 | −0.21 |
6. protect macro-invertebrates | SW < 0.4 | 0.06 | −0.21 |
7. prevent exposure of Acid Sulphate Soils | GW < −0.5 | 0.06 | −0.21 |
8. maintain sediment processes | GW < −0.5 | 0.06 | −0.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanda, A.; Beesley, L.; Locatelli, L.; Gersonius, B.; Hipsey, M.R.; Ghadouani, A. Adaptation Tipping Points of a Wetland under a Drying Climate. Water 2018, 10, 234. https://doi.org/10.3390/w10020234
Nanda A, Beesley L, Locatelli L, Gersonius B, Hipsey MR, Ghadouani A. Adaptation Tipping Points of a Wetland under a Drying Climate. Water. 2018; 10(2):234. https://doi.org/10.3390/w10020234
Chicago/Turabian StyleNanda, Amar, Leah Beesley, Luca Locatelli, Berry Gersonius, Matthew R. Hipsey, and Anas Ghadouani. 2018. "Adaptation Tipping Points of a Wetland under a Drying Climate" Water 10, no. 2: 234. https://doi.org/10.3390/w10020234