In Vitro Activity of Several Essential Oils Extracted from Aromatic Plants against Ascosphaera apis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ascosphaera apis Culture and Inoculum Preparation
2.2. Plant Collection and Essential Oil (EO) Preparation
2.3. Antifungal Test of Essential Oils (EOs)
2.3.1. Agar Diffusion Method
2.3.2. Microdilution Method
2.4. Chemical Composition
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bissett, J.; Duke, G.; Goettel, M. Ascosphaera acerosa sp. nov. isolated from the alfalfa leafcutting bee, with a key to the species of Ascosphaera. Mycologia 1996, 88, 797–803. [Google Scholar] [CrossRef]
- Youssef, N.N.; McManus, W.R. Ascosphaera torchioi sp. nov., a pathogen of Osmia lignaria propinqua (Hymenoptera). Mycotaxon 2001, 77, 7–13. [Google Scholar]
- Spiltoir, C.F. Life cycle of Ascosphaera apis (Pericystis apis). Am. J. Bot. 1955, 42, 501–508. [Google Scholar] [CrossRef]
- Aronstein, K.A.; Murray, K.D.; de León, J.H.; Qin, X.; Weinstock, G. High mobility group (HMG-box) genes in the honeybee fungal pathogen Ascosphaera apis. Mycologia 2007, 99, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Al-Ghamdi, A.; Usmani, S.; Khan, K.A.; Alqarni, A.S.; Kaur, M.; Al-Waili, N. In vitro evaluation of the effects of some plant essential oils on Ascosphaera apis, the causative agent of Chalkbrood disease. Saudi J. Biol. Sci. 2017, 24, 1001–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bignell, D.E.; Heath, L.A.F. Electropositive redox state of the fifth-instar larval gut of Apis mellifera. J. Apic. Res. 1985, 24, 211–213. [Google Scholar] [CrossRef]
- Puerta, F.; Flores, J.M.; Bustos, M.; Padilla, F.; Campano, F. Chalkbrood development in honeybee brood under controlled conditions. Apidologie 1994, 25, 540–546. [Google Scholar] [CrossRef]
- Flores, J.M.; Ruiz, J.A.; Ruz, J.M.; Puerta, F.; Bustos, M.; Padilla, F.; Campano, F. Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie 1996, 27, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Heath, L.A.F.; Gaze, B.M. Carbon dioxide activation of spores of the chalkbrood fungus Ascosphaera apis. J. Apic. Res. 1987, 26, 243–246. [Google Scholar] [CrossRef]
- Heath, L.A.F. Chalk brood pathogens: A review. Bee World 1982, 63, 130–135. [Google Scholar] [CrossRef]
- Bailey, L.; Ball, B.V. Honey Bee Pathology, 2nd ed.; Academic Press: London, UK, 1991; pp. 53–63. [Google Scholar]
- Boudegga, H.; Boughalleb, N.; Barbouche, N.; Ben Hamouda, M.H.; El Mahjoub, M. In vitro inhibitory actions of some essential oils on Ascosphaera apis, a fungus responsible for honey bee chalkbrood. J. Apic. Res. 2010, 49, 236–242. [Google Scholar] [CrossRef]
- Glinski, Z. The effect of Varroa jacobsoni Oud. on the incidence and course of chalkbrood disease in Apis mellifera L. colonies. Ann. Univ. Mariae Curie-Skłodowska Sect. DD Med. Vet. 1988, 43, 23–27. [Google Scholar]
- Koch, W.; Ritter, W. Examination of artificially infested brood with Varroa mites for secondary infections. Apidologie 1989, 20, 517–519. [Google Scholar]
- Liu, T.P.; Ritter, W. Morphology of some microorganisms associated with the female mite Varroa jacobsoni: A survey by electron microscopy. In Africanized Honey Bees and Bee Mites; Needham, G.R., Page, E., Jr., Delfinado-Baker, M., Bowman, C.E., Eds.; Ellis Horwood Ltd.: Chichester, UK, 1988; pp. 467–474. [Google Scholar]
- Puerta, F.; Flores, J.K.; Jimenez, A.J.; Bustos, M.; Padilla, F. Enfermedades secundarias a la parasitación por Varroa en Apis mellifera. Vida Apic. 1990, 43, 54–59. [Google Scholar]
- Flores, J.M.; Spivak, M.; Gutiérrez, I. Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood. Vet. Microbiol. 2005, 108, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, O.A.; Mourad, A.K.; El Kady, M.B.; Nemat, F.M.; Morsy, M.E. Assessment of losses in honey yield due to the chalkbrood disease, with reference to the determination of its economic injury levels in Egypt. Commun. Agri. Appl. Biol. Sci. 2005, 70, 703–714. [Google Scholar]
- Aronstein, K.A.; Murray, K.D. Chalkbrood disease in honey bees. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S20–S29. [Google Scholar] [CrossRef]
- Liu, T.P. Effects of itraconazole on the sporocysts wall of the entomopathogenic fungi Ascosphaera apis as revealed by the scanning electron microscope. Mycopathologia 1988, 103, 75–80. [Google Scholar] [CrossRef]
- Glinski, Z.; Chmielewski, M. Imidazole derivatives in control of the honey bee brood mycoses. Pszczel. Zesz. Nauk. 1996, 40, 163–173. [Google Scholar]
- Davis, C.; Ward, W. Control of Chalkbrood Disease with Natural Products; RIRDC Publication No 03/2017; Rural Industries Research and Development Corporation, Canprint: Barton, Australia, 2003. [Google Scholar]
- Kloucek, P.; Smid, J.; Flesar, J.; Havlik, J.; Titera, D.; Rada, V.; Drabek, O.; Kokoska, L. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis. Nat. Prod. Commun. 2012, 7, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Mourad, A.K.; Zaghloul, O.A.; El Kady, M.B.; Nemat, F.M.; Morsy, M.E. A novel approach for the management of the chalkbrood disease infesting honeybee Apis mellifera L. (Hymenoptera: Apidae) colonies in Egypt. Commun. Agric. Appl. Biol. Sci. 2005, 70, 601–611. [Google Scholar] [PubMed]
- Ruffinengo, S.R.; Maggi, M.; Fuselli, S.; Floris, I.; Clemente, G.; Firpo, N.H.; Bailac, P.N.; Ponzi, M.I. Laboratory evaluation of Heterothalamus alienus essential oil against different pests of Apis mellifera. J. Essent. Oil Res. 2006, 18, 704–707. [Google Scholar] [CrossRef]
- Larrán, S.; Ringuelet, J.A.; Carranza, M.R.; Henning, C.P.; Ré, M.S.; Cerimele, E.L.; Urrutia, M.I. In vitro fungistatic effect of essential oils against Ascosphaera apis. J. Essent. Oil Res. 2001, 13, 122–124. [Google Scholar] [CrossRef]
- Dellacasa, A.D.; Bailac, P.N.; Ponzi, M.I.; Ruffinengo, S.R.; Eguaras, M.J. In Vitro activity of essential oils from San Luis-Argentina against Ascosphaera apis. J. Essent. Oil Res. 2003, 15, 282–285. [Google Scholar] [CrossRef]
- Eguaras, M.J.; Fuselli, S.; Gende, L.; Fritz, R.; Ruffinengo, S.R.; Clemente, G.; Gonzalez, A.; Bailac, P.N.; Ponzi, M.I. An in vitro evaluation of Tagetes minuta essential oil for the control of the honeybee pathogens Paenibacillus larvae and Ascosphaera apis, and the parasitic mite Varroa destructor. J. Essent. Oil Res. 2005, 17, 336–340. [Google Scholar] [CrossRef]
- Bailac, P.N.; Gende, L.; Gascón, A.; Fritz, R.; Ponzil, M.I.; Eguaras, M. Control of Ascosphaera apis and Paenibacillus larvae subsp. larvae by the use of essential oils for obtaining beehive products without toxic residues. Mol. Med. Chem. 2006, 11, 1–2. [Google Scholar]
- Gabriel, K.T.; Kartforosh, L.; Crow, S.A., Jr.; Cornelison, C.T. Antimicrobial activity of essential oils against the fungal pathogens Ascosphaera apis and Pseudogymnoascus destructans. Mycopathologia 2018, 183, 921–934. [Google Scholar] [CrossRef]
- Nardoni, S.; D’Ascenzi, C.; Rocchigiani, G.; Papini, R.A.; Pistelli, L.; Formato, G.; Najar, B.; Mancianti, F. Stonebrood and chalkbrood in Apis mellifera causing fungi: In Vitro sensitivity to some essential oils. Nat. Prod. Res. 2018, 32, 385–390. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Angioni, A.; Barra, A.; Arlorio, M.; Caisson, J.D.; Russo, M.T.; Pirisi, F.M.; Satta, M.; Cabras, P. Chemical Composition, Plant Genetic Differences, and Antifungal Activity of the Essential Oil of Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym. J. Agric. Food Chem. 2003, 51, 1030–1034. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Floris, I.; Carta, C.; Moretti, M.D.L. Activités in vitro de plusieurs huiles essentielles sur Bacillus larvae White et essai au rucher. Apidologie 1996, 27, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Perczak, A.; Gwiazdowska, D.; Marchwińska, K.; Juś, K.; Gwiazdowski, R.; Waśkiewicz, A. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch. Microbiol. 2019, 201, 1085–1097. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2018. Available online: http://www.R-project.org (accessed on 15 February 2021).
- Colin, M.E.; de Lahitte, J.D.; Larribau, E.; Boué, T. Activité des huiles essentielles de Labiées sur Ascophaera apis et traitement d’un rucher. Apidologie 1989, 20, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Floris, I.; Satta, A.; Cabras, P.; Garau, V.L.; Angioni, A. Comparison between two thymol formulations in the control of Varroa destructor: Effectiveness, persistence, and residues. J. Econ. Entomol. 2004, 97, 187–191. [Google Scholar] [CrossRef]
- Carayon, J.L.; Téné, N.; Bonnafé, E.; Alayrangues, J.; Hotier, L.; Armengaud, C.; Treilhou, M. Thymol as an alternative to pesticides: Persistence and effects of Apilife Var on the phototactic behavior of the honeybee Apis mellifera. Environ. Sci. Pollut. Res. Int. 2014, 21, 4934–4939. [Google Scholar] [CrossRef]
- Alayrangues, J.; Hotier, L.; Massou, I.; Bertrand, Y.; Armengaud, C. Prolonged effects of in-hive monoterpenoids on the honey bee Apis mellifera. Ecotoxicology 2016, 25, 856–862. [Google Scholar] [CrossRef]
- Gende, L.B.; Floris, I.; Fritz, R.; Eguaras, M.J. Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bull. Insectology 2008, 61, 1–4. [Google Scholar]
- Gende, L.B.; Maggi, M.D.; Damiani, N.; Fritz, R.; Eguaras, M.J.; Floris, I. Advances in the apiary control of the honeybee American Foulbrood with Cinnamon (Cinnamomum zeylanicum) essential oil. Bull. Insectology 2009, 62, 93–97. [Google Scholar]
- Gende, L.B.; Fernandez, N.; Buffa, F.; Ruiu, L.; Satta, A.; Fritz, R.; Eguaras, M.J.; Floris, I. Susceptibility of Paenibacillus larvae isolates to a tetracycline hydrochloride and Cinnamon (Cinnamomum zeylanicum) essential oil mixture. Bull. Insectology 2010, 63, 247–250. [Google Scholar]
- Calderone, N.W.; Shimanuki, H.; Allen-Wardell, G. An in vitro evaluation of botanical compounds for the control of the honeybee pathogens Bacillus larvae and Ascosphaera apis, and the secondary invader B. alvei. J. Essent. Oil Res. 1994, 6, 279–287. [Google Scholar] [CrossRef]
- Boch, R.; Shearer, D.A. Identification of geraniol as the active component in the Nassanoff pheromone of the honey bee. Nature 1962, 194, 704–706. [Google Scholar] [CrossRef]
- Boch, R.; Shearer, D.A. Identification of nerolic and geranic acids in the Nassanoff pheromone of the honey bee. Nature 1964, 202, 320–321. [Google Scholar] [CrossRef]
- Shearer, D.A.; Boch, R. Citral in the Nassanoff pheromone of the honey bee. J. Insect Physiol. 1966, 12, 1513–1521. [Google Scholar] [CrossRef]
- Felicioli, A.; Cilia, G.; Mancini, S.; Turchi, B.; Galaverna, G.; Cirlini, M.; Cerri, D.; Fratini, F. In vitro antibacterial activity and volatile characterisation of organic Apis mellifera ligustica (Spinola, 1906) beeswax ethanol extracts. Food Biosci. 2019, 29, 102–109. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.D.; Spivak, M. Increased resin collection after parasite challenge: A case of self-medication in honey bees? PLoS ONE 2012, 7, e34601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusceddu, M.; Piluzza, G.; Theodorou, P.; Buffa, F.; Ruiu, L.; Bullitta, S.; Floris, I.; Satta, A. Resin foraging dynamics in Varroa destructor-infested hives: A case of medication of kin? Insect Sci. 2019, 26, 297–310. [Google Scholar] [CrossRef]
- Guleria, S.; Tiku, A.K. Botanicals in pest management: Current status and future perspectives. In Integrated Pest Management: Innovation-Development Process; Peshin, R., Dhawan, A.K., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2009; Volume 1, pp. 317–329. [Google Scholar]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic Int. 2008, 4, 63–84. [Google Scholar]
Essential Oils | Inhibition Halo Diameter (mm) |
---|---|
Thymus herba-barona | No growth |
Thymus capitatus | No growth |
Helichrysum italicum | 40.0 ± 2.00 a 1 |
Cinnamomum zeylanicum (commercial) | 24.8 ± 0.76 b |
Rosmarinus officinalis (commercial) | 16.0 ± 1.32 c |
Eucalyptus globulus | 10.0 ± 1.73 d |
Rosmarinus officinalis | 9.0 ± 1.00 d |
Myrtus communis | 8.0 ± 0.50 d |
Salvia desoleana | No inhibition |
Salvia officinalis | No inhibition |
Nystatin | 17.0 ± 1.32 c |
Control | No inhibition |
Essential Oils | MIC 1 (µg/mL) | MFC 2 (µg/mL) | MSC 2 (µg/mL) |
---|---|---|---|
Thymus capitatus | 100 3 | 300 | 400 |
Thymus herba-barona | 100 | 300 | 400 |
Cinnamomum zeylanicum | 200 | 200 | 400 |
Helichrysum italicum | ˗ | ˗ | 500 |
Components | CAS Number | r.t. α min | Essential Oils | |||
---|---|---|---|---|---|---|
Thymus capitatus | Thymus herba-barona | Cinnamomun zeylanicum | Helichrysum italicum | |||
unknown | 5.25 | ˗ β | 1.95 | ˗ | 0.56 | |
α-Thujene | 2867-05-2 | 5.76 | 1.60 | 1.00 | 1.1 | ˗ |
α-Pinene | 7785-26-4 | 6.13 | 0.72 | 0.31 | 1.8 | 0.44 |
Camphene | 79-92-5 | 7.17 | 0.22 | 0.50 | 0.2 | 0.27 |
Benzaldehyde | 100-52-7 | 7.30 | ˗ | ˗ | 0.2 | ˗ |
Sabinene | 3387-41-5 | 7.50 | ˗ | ˗ | ˗ | ˗ |
β-Pinene | 127-91-3 | 7.88 | 0.08 | 2.23 | 0.1 | 0.20 |
Δ³-Carene | 13466-78-9 | 9.10 | 1.54 | ˗ | ˗ | ˗ |
β-Mircene | 123-35-3 | 9.14 | 2.11 | 1.05 | - | 0.27 |
α-Phellandrene | 2243-33-6 | 9.30 | 0.10 | 0.18 | 0.1 | 0.19 |
α-Terpinene | 99-86-5 | 9.57 | n.d. γ | 1.04 | ˗ | ˗ |
Limonene | 138-86-3 | 10.28 | 0.97 | ˗ | 0.2 | 1.71 |
p-Cymene | 99-87-6 | 10.34 | 6.17 | 6.16 | 0.2 | 0.15 |
1.8-Cineolo | 470-82-6 | 10.71 | ˗ | 0.96 | ˗ | 0.83 |
γ-Terpinene | 99-85-4 | 11.80 | 6.33 | 4.49 | ˗ | 0.13 |
Terpinolene | 586-62-9 | 12.75 | 1.15 | 0.20 | ˗ | ˗ |
Cinnamic aldehyde | 104-55-2 | 14.72 | ˗ | ˗ | 79.3 | ˗ |
Terpinil acetate | 80-26-2 | 22.53 | ˗ | ˗ | - | 0.39 |
Geranyl acetate | 105-87-3 | 22.70 | ˗ | ˗ | - | 0.13 |
Camphor | 76-22-2 | 23.59 | ˗ | ˗ | 0.1 | ˗ |
Linalool | 78-70-6 | 23.71 | n.d. | 1.96 | 0.5 | 5.34 |
3-Octanol | 589-98-0 | 23.82 | 0.32 | ˗ | ˗ | ˗ |
α-Thujone | 546-80-5 | 23.98 | ˗ | ˗ | - | ˗ |
β-Thujone | 471-15-8 | 24.10 | ˗ | ˗ | - | ˗ |
Bornyl acetate | 5655-61-8 | 24.39 | 0.04 | ˗ | 0.5 | ˗ |
Farnesol | 4602-84-0 | 24.45 | ˗ | ˗ | 0.2 | ˗ |
Linalyl acetate | 115-95-7 | 24.51 | ˗ | ˗ | ˗ | 1.47 |
β-Caryophyllene | 87-44-5 | 24.66 | 5.20 | 2.04 | 0.1 | 0.44 |
Linalyl isobutirrate | 78-35-3 | 25.21 | ˗ | ˗ | 0.1 | ˗ |
Terpinen-4-ol | 562-74-3 | 25.52 | 0.22 | 1.26 | ˗ | ˗ |
γ-Curcumene | 28976-68-3 | 27.50 | ˗ | ˗ | ˗ | 2.05 |
Curcumene | 644-30-4 | 27.65 | ˗ | ˗ | ˗ | 6.23 |
α-Terpineol | 98-55-5 | 28.89 | 0.07 | 0.13 | 0.2 | 1.58 |
Borneol | 464-45-9 | 29.11 | n.d. | 4.25 | 0.2 | ˗ |
Verbenone | 1196-01-6 | 29.60 | ˗ | ˗ | - | ˗ |
β-Bisabolene | 495-61-4 | 26.93 | ˗ | ˗ | - | ˗ |
Carvone | 2244-16-8 | 30.13 | ˗ | 0.84 | ˗ | ˗ |
Nerol | 106-25-2 | 32.65 | ˗ | ˗ | ˗ | 8.22 |
Neryl acetate | 141-12-8 | 33.89 | ˗ | ˗ | ˗ | 51.59 |
Geraniol | 106-24-1 | 34.27 | ˗ | ˗ | 0.2 | ˗ |
Caryophyllene oxide | 1139-30-6 | 38.41 | 0.22 | 1.23 | ˗ | ˗ |
Metileugenol | 95-15-2 | 39.44 | ˗ | ˗ | 0.3 | ˗ |
Neryl propionate | 105-91-9 | 40.12 | ˗ | ˗ | ˗ | 5.51 |
Eugenol | 97-53-0 | 41.01 | ˗ | ˗ | 11.9 | ˗ |
β-Eudesmol | 473-15-4 | 42.15 | ˗ | ˗ | ˗ | 2.27 |
α-Eudesmol | 473-16-5 | 42.89 | ˗ | ˗ | ˗ | 1.06 |
Cinnamyl alcohol | 104-54-1 | 44.03 | ˗ | ˗ | 0.5 | ˗ |
Thymol | 89-83-8 | 44.59 | 0.38 | 1.48 | ˗ | 0.16 |
Carvacrol | 499-75-2 | 45.47 | 68.01 | 60.04 | ˗ | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusceddu, M.; Floris, I.; Mangia, N.P.; Angioni, A.; Satta, A. In Vitro Activity of Several Essential Oils Extracted from Aromatic Plants against Ascosphaera apis. Vet. Sci. 2021, 8, 80. https://doi.org/10.3390/vetsci8050080
Pusceddu M, Floris I, Mangia NP, Angioni A, Satta A. In Vitro Activity of Several Essential Oils Extracted from Aromatic Plants against Ascosphaera apis. Veterinary Sciences. 2021; 8(5):80. https://doi.org/10.3390/vetsci8050080
Chicago/Turabian StylePusceddu, Michelina, Ignazio Floris, Nicoletta P. Mangia, Alberto Angioni, and Alberto Satta. 2021. "In Vitro Activity of Several Essential Oils Extracted from Aromatic Plants against Ascosphaera apis" Veterinary Sciences 8, no. 5: 80. https://doi.org/10.3390/vetsci8050080