Identification and Characterization of Novel Serpentoviruses in Viperid and Elapid Snakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Care
2.3. Antemortem and Postmortem Sampling
2.4. Viral Screening
2.5. Illumina Next-Generation Sequencing
2.6. Characterizing Genome Organization
2.7. Phylogenetic Analysis
2.8. Virus Isolation
3. Results
3.1. Preliminary Disease Investigation
3.2. Serpentovirus Screening
3.3. Postmortem Findings
3.4. Serpentovirus Diversity in Infected Snakes
3.5. Whole-Genome Sequencing and Phylogenetic Analysis
3.6. Genome Organization
3.7. Virus Isolation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stenglein, M.D.; Jacobson, E.R.; Wozniak, E.J.; Wellehan, J.F.X.; Kincaid, A.; Gordon, M.; Porter, B.F.; Baumgartner, W.; Stahl, S.; Kelley, K.; et al. Ball Python Nidovirus: A Candidate Etiologic Agent for Severe Respiratory Disease in Python Regius. MBio 2014, 5, e01484-14. [Google Scholar] [CrossRef] [PubMed]
- Parrish, K.; Kirkland, P.D.; Skerratt, L.F.; Ariel, E. Nidoviruses in Reptiles: A Review. Front. Vet. Sci. 2021, 8, 733404. [Google Scholar] [CrossRef]
- Bodewes, R.; Lempp, C.; Schürch, A.C.; Habierski, A.; Hahn, K.; Lamers, M.; Von Dörnberg, K.; Wohlsein, P.; Drexler, J.F.; Haagmans, B.L.; et al. Novel Divergent Nidovirus in a Python with Pneumonia. J. Gen. Virol. 2014, 95, 2480–2485. [Google Scholar] [CrossRef] [PubMed]
- Uccellini, L.; Ossiboff, R.J.; De Matos, R.E.; Morrisey, J.K.; Petrosov, A.; Navarrete-Macias, I.; Jain, K.; Hicks, A.L.; Buckles, E.L.; Tokarz, R.; et al. Identification of a Novel Nidovirus in an Outbreak of Fatal Respiratory Disease in Ball Pythons (Python Regius). Virol. J. 2014, 11, 144. [Google Scholar] [CrossRef]
- Hoon-Hanks, L.L.; Layton, M.L.; Ossiboff, R.J.; Parker, J.S.L.; Dubovi, E.J.; Stenglein, M.D. Respiratory Disease in Ball Pythons (Python Regius) Experimentally Infected with Ball Python Nidovirus. Virology 2018, 517, 77–87. [Google Scholar] [CrossRef]
- Li, W.T.; Lee, M.S.; Tseng, Y.C.; Yang, N.Y. A Case Report of Reptile-Associated Nidovirus (Serpentovirus) in a Ball Python (Python Regius) in Taiwan. J. Vet. Med. Sci. 2020, 82, 788–792. [Google Scholar] [CrossRef]
- Hoon-Hanks, L.L.; Ossiboff, R.J.; Bartolini, P.; Fogelson, S.B.; Perry, S.M.; Stöhr, A.C.; Cross, S.T.; Wellehan, J.F.X.; Jacobson, E.R.; Dubovi, E.J.; et al. Longitudinal and Cross-Sectional Sampling of Serpentovirus (Nidovirus) Infection in Captive Snakes Reveals High Prevalence, Persistent Infection, and Increased Mortality in Pythons and Divergent Serpentovirus Infection in Boas and Colubrids. Front. Vet. Sci. 2019, 6, 338. [Google Scholar] [CrossRef]
- Dervas, E.; Hepojoki, J.; Laimbacher, A.; Romero-Palomo, F.; Jelinek, C.; Keller, S.; Smura, T.; Hepojoki, S.; Kipar, A.; Hetzel, U. Nidovirus-Associated Proliferative Pneumonia in the Green Tree Python (Morelia Viridis). J. Virol. 2017, 91, e00718-17. [Google Scholar] [CrossRef]
- Flies, A.S.; Flies, E.J.; Fountain-Jones, N.M.; Musgrove, R.E.; Hamede, R.K.; Philips, A.; Perrott, M.R.F.; Dunowska, M. Wildlife Nidoviruses: Biology, Epidemiology, and Disease Associations of Selected Nidoviruses of Mammals and Reptiles. MBio 2023, 14, e00715-23. [Google Scholar] [CrossRef]
- Tillis, S.B.; Josimovich, J.M.; Miller, M.A.; Hoon-Hanks, L.L.; Hartmann, A.M.; Claunch, N.M.; Iredale, M.E.; Logan, T.D.; Yackel Adams, A.A.; Bartoszek, I.A.; et al. Divergent Serpentoviruses in Free-Ranging Invasive Pythons and Native Colubrids in Southern Florida, United States. Viruses 2022, 14, 2726. [Google Scholar] [CrossRef]
- Hoon-Hanks, L.L.; Stöhr, A.C.; Anderson, A.J.; Evans, D.E.; Nevarez, J.G.; Díaz, R.E.; Rodgers, C.P.; Cross, S.T.; Steiner, H.R.; Parker, R.R.; et al. Serpentovirus (Nidovirus) and Orthoreovirus Coinfection in Captive Veiled Chameleons (Chamaeleo Calyptratus) with Respiratory Disease. Viruses 2020, 12, 1329. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, M.A.; Jackson, B.; Jackson, C.; Xavier, P.; Warren, K. Discovery and Partial Genomic Characterisation of a Novel Nidovirus Associated with Respiratory Disease in Wild Shingleback Lizards (Tiliqua Rugosa). PLoS ONE 2016, 11, e0165209. [Google Scholar] [CrossRef]
- Zhang, J.; Finlaison, D.S.; Frost, M.J.; Gestier, S.; Gu, X.; Hall, J.; Jenkins, C.; Parrish, K.; Read, A.J.; Srivastava, M.; et al. Identification of a Novel Nidovirus as a Potential Cause of Large Scale Mortalities in the Endangered Bellinger River Snapping Turtle (Myuchelys Georgesi). PLoS ONE 2018, 13, e0205209. [Google Scholar] [CrossRef]
- Blahak, S.; Jenckel, M.; Höper, D.; Beer, M.; Hoffmann, B.; Schlottau, K. Investigations into the Presence of Nidoviruses in Pythons. Virol. J. 2020, 17, 6. [Google Scholar] [CrossRef]
- Hyndman, T.H.; Marschang, R.E.; Wellehan, J.F.X.; Nicholls, P.K. Isolation and Molecular Identification of Sunshine Virus, a Novel Paramyxovirus Found in Australian Snakes. Infect. Genet. Evol. 2012, 12, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Tillis, S.B.; Ossiboff, R.J.; Wellehan, J.F.X. Serpentoviruses Exhibit Diverse Organization and ORF Composition with Evidence of Recombination. Viruses 2024, 16, 310. [Google Scholar] [CrossRef]
- Katoh, K.; Toh, H. Improved Accuracy of Multiple NcRNA Alignment by Incorporating Structural Information into a MAFFT-Based Framework. BMC Bioinform. 2008, 9, 212. [Google Scholar] [CrossRef]
- Bernhofer, M.; Dallago, C.; Karl, T.; Satagopam, V.; Heinzinger, M.; Littmann, M.; Olenyi, T.; Qiu, J.; Schütze, K.; Yachdav, G.; et al. PredictProtein—Predicting Protein Structure and Function for 29 Years. Nucleic Acids Res. 2021, 49, W535–W540. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucleic Acids Res. 2011, 39, 29–37. [Google Scholar] [CrossRef]
- Gupta, R.; Brunak, S. Prediction of Glycosylation across the Human Proteome and the Correlation to Protein Function. Pac. Symp. Biocomput. 2002, 322, 310–322. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Tillis, S.B. Novel Viper and Elapid Serpentovirus Alignments for Phylogenetic Analysis. figshare. Dataset. Available online: https://figshare.com/articles/dataset/Novel_Viper_and_Elapid_Serpentovirus_Alignments_for_Phylogenetic_Analysis/26885083?file=48908221 (accessed on 20 May 2024).
- Miller, M.A.; Schwartz, T.; Pickett, B.E.; He, S.; Klem, E.B.; Scheuermann, R.H.; Passarotti, M.; Kaufman, S.; Oleary, M.A. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol. Bioinform. 2015, 11, 43–48. [Google Scholar] [CrossRef]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Whelan, S.; Goldman, N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef]
- Le, S.Q.; Gascuel, O. An Improved General Amino Acid Replacement Matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef]
- Gorbalenya, A.; Samborskiy, D.; Junglen, S.; Lauber, C.; Neuman, B.; Ziebuhr, J. Create 47 New Taxa in the Order, Ranging from Subfamilies to Species (Nidovirales). Available online: https://ictv.global/ictv/proposals/2021.005S.R.Nidovirales.zip (accessed on 14 November 2022).
- Tillis, S.B.; Holt, C.; Havens, S.; Logan, T.D.; Julander, J.G.; Ossiboff, R.J. In Vitro Characterization and Antiviral Susceptibility of Ophidian Serpentoviruses. Microorganisms 2023, 11, 1371. [Google Scholar] [CrossRef]
- Leineweber, C.; Marschang, R.E. Detection of Nidoviruses in Samples Collected from Captive Snakes in Europe between 2016 and 2021. Vet. Rec. 2023, 192, e2588. [Google Scholar] [CrossRef]
- Boon, M.A.; Iredale, M.E.; Tillis, S.B.; Ossiboff, R.J. Ophidian Serpentoviruses: A Review and Perspective. J. Herpetol. Med. Surg. 2023, 33, 205–216. [Google Scholar] [CrossRef]
- Barnes, C.H.; Strine, C.T.; Suwanwaree, P.; Hill, J.G. Movement and Home Range of Green Pit Vipers (Trimeresurus Spp.) in a Rural Landscape in North-East Thailand. Herpetol. Bull. 2017, 142, 19–28. [Google Scholar]
- Wilson, D.; Heinsohn, R.; Legge, S. Age- and Sex-Related Differences in the Spatial Ecology of a Dichromatic Tropical Python (Morelia Viridis). Austral Ecol. 2006, 31, 577–587. [Google Scholar] [CrossRef]
- Alencar, L.R.V.; Quental, T.B.; Grazziotin, F.G.; Alfaro, M.L.; Martins, M.; Venzon, M.; Zaher, H. Diversification in Vipers: Phylogenetic Relationships, Time of Divergence and Shifts in Speciation Rates. Mol. Phylogenet. Evol. 2016, 105, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, D.G.; Lee, J.L.; Miller, A.H.; Zug, G.R. Troublesome Trimes: Potential Cryptic Speciation of the Trimeresurus (Popeia) Popeiorum Complex (Serpentes: Crotalidae) around the Isthmus of Kra (Myanmar and Thailand). Zootaxa 2017, 4347, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, L.H.; Donnellan, S.C. Phylogeographic Analysis of the Green Python, Morelia Viridis, Reveals Cryptic Diversity. Mol. Phylogenet. Evol. 2003, 27, 36–44. [Google Scholar] [CrossRef]
- Natusch, D.J.D.; Esquerré, D.; Lyons, J.A.; Hamidy, A.; Lemmon, A.R.; Moriarty Lemmon, E.; Riyanto, A.; Keogh, J.S.; Donnellan, S. Species Delimitation and Systematics of the Green Pythons (Morelia Viridis Complex) of Melanesia and Australia. Mol. Phylogenet. Evol. 2020, 142, 106640. [Google Scholar] [CrossRef]
- Marschang, R.E.; Kolesnik, E.; Müller, E. Nidoviruses in Snakes in Europe. In BSAVA Congress Proceedings 2019; British Small Animal Veterinary Association: Gloucester, UK, 2020. [Google Scholar]
- Gribble, J.; Stevens, L.J.; Agostini, M.L.; Anderson-Daniels, J.; Chappell, J.D.; Lu, X.; Pruijssers, A.J.; Routh, A.L.; Denison, M.R. The Coronavirus Proofreading Exoribonuclease Mediates Extensive Viral Recombination. PLoS Pathog. 2021, 17, e1009226. [Google Scholar] [CrossRef]
- Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A Contemporary View of Coronavirus Transcription. J. Virol. 2007, 81, 20–29. [Google Scholar] [CrossRef]
- Wijegoonawardane, P.K.M.; Sittidilokratna, N.; Petchampai, N.; Cowley, J.A.; Gudkovs, N.; Walker, P.J. Homologous Genetic Recombination in the Yellow Head Complex of Nidoviruses Infecting Penaeus Monodon Shrimp. Virology 2009, 390, 79–88. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the Invertebrate RNA Virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.; Chen, X.; Tian, J.; Chen, L.; Li, K.; Wang, W.; Eden, J.; Shen, J.; Liu, L.; et al. The Evolutionary History of Vertebrate RNA Viruses. Nature 2018, 556, 197–202. [Google Scholar] [PubMed]
- Gorbalenya, A.E.; Enjuanes, L.; Ziebuhr, J.; Snijder, E.J. Nidovirales: Evolving the Largest RNA Virus Genome. Virus Res. 2006, 117, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Ouaissi, A. Apoptosis-like Death in Trypanosomatids: Search for Putative Pathways and Genes Involved. Kinetoplastid Biol. Dis. 2003, 2, 5. [Google Scholar] [CrossRef]
- Luo, J.; Nikolaev, A.Y.; Imai, S.I.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative Control of P53 by Sir2α Promotes Cell Survival under Stress. Cell 2001, 107, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, W.; Sagawa, T.; Niki, H.; Kurumizaka, H. Structural Basis for the DNA-Binding Activity of the Bacterial β-Propeller Protein YncE. Acta Crystallogr. Sect. D 2011, D67, 1045–1053. [Google Scholar] [CrossRef]
- Ignoul, S.; Eggermont, J. CBS Domains: Structure, Function, and Pathology in Human Proteins. Am. J. Physiol.-Cell Physiol. 2005, 289, C1369–C1378. [Google Scholar] [CrossRef]
- Di, H.; McIntyre, A.A.; Brinton, M.A. New Insights about the Regulation of Nidovirus Subgenomic MRNA Synthesis. Virology 2018, 517, 38–43. [Google Scholar] [CrossRef]
- Van Vliet, A.L.W.; Smits, S.L.; Rottier, P.J.M.; De Groot, R.J. Discontinuous and Non-Discontinuous Subgenomic RNA Transcription in a Nidovirus. EMBO J. 2002, 21, 6571–6580. [Google Scholar] [CrossRef]
- Posthuma, C.C.; te Velthuis, A.J.W.; Snijder, E.J. Nidovirus RNA Polymerases: Complex Enzymes Handling Exceptional RNA Genomes. Virus Res. 2017, 234, 58–73. [Google Scholar] [CrossRef]
- Di, H.; Madden, J.C.; Morantz, E.K.; Tang, H.Y.; Graham, R.L.; Baric, R.S.; Brinton, M.A. Expanded Subgenomic MRNA Transcriptome and Coding Capacity of a Nidovirus. Proc. Natl. Acad. Sci. USA 2017, 114, E8895–E8904. [Google Scholar] [CrossRef]
- Mateos-Gomez, P.A.; Morales, L.; Zuñiga, S.; Enjuanes, L.; Sola, I. Long-Distance RNA-RNA Interactions in the Coronavirus Genome Form High-Order Structures Promoting Discontinuous RNA Synthesis during Transcription. J. Virol. 2013, 87, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.R.; Dale, E.; Aguirre, A.A. Illegal Wildlife Trade and Emerging Infectious Diseases: Pervasive Impacts to Species, Ecosystems and Human Health. Animals 2021, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
Genus-Continental Range Family Species-Common Name | Total Viral Prevalence | Clade A Prevalence | Clade B Prevalence | Clade C Prevalence | Clade D Prevalence | Clade p-Value |
---|---|---|---|---|---|---|
Ovophis-Asian Viperidae | 0% (0/2) | - | - | - | - | |
makazayazaya-Taiwan mountain pit viper | 0% (0/2) | - | - | - | - | |
Protobothrops-Asian Viperidae | 0% (0/2) | - | - | - | - | |
mangshanensis-Mangshan pit viper | 0% (0/2) | - | - | - | - | |
Trimeresurus-Asian Viperidae | 74% (87/118) | 33% (39/118) | 6% (7 */118) | 34% (40 */118) | 2% (2/118) | |
albolabris-White-lipped pit viper | 100% (2/2) | 100% (2/2) | - | - | - | 3.9 × 10−1 |
brongersmai-Brongersmai’s pit viper | 0% (0/2) | - | - | - | - | |
erythrurus-Red-tailed bamboo pit viper | 100% (7/7) | 100% (7/7) | - | - | - | 2.7 × 10−2 ** |
fucatus-Siamese Peninsula pit viper | 50% (2/4) | 50% (2/4) | - | - | - | 3.9 × 10−1 |
gumprechti-Gumprecht’s pit viper | 100% (2/2) | - | - | 50% (1/2) | 50% (1/2) | 5.1 × 10−2 |
hageni-Hagen’s pit viper | 67% (2/3) | 33% (1/3) | - | 33% (1/3) | - | 1 |
insularis-White-lipped island pit viper | 60% (6/10) | - | 60% (6/10) | - | - | 1.3 × 10−8 ** |
puniceus-Flat-nosed pit viper | 62% (28/45) | 16% (7/45) | - | 47% (21/45) | - | 9.2 × 10−4 ** |
purpureomaculatus-Mangrove pit viper | 95% (20/21) | 95% (20/21) | - | - | - | 9.7 × 10−9 ** |
sumatranus-Sumatran pit viper | 100% (1/1) | - | - | 100% (1/1) | - | 1 |
venustus-Beautiful pit viper | 93% (14/15) | - | - | 87% (13/15) | 7% (1/15) | 6.5 × 10−5 ** |
wagleri-Wagler’s viper | 50% (3/6) | - | 17% (1*/6) | 50% (3 */6) | - | 1.8 × 10−1 |
Atheris-African Viperidae | 10% (2/20) | - | - | 10% (2/20) | - | |
ceratophora-Usambara tree viper | 0% (0/2) | - | - | - | - | |
squamigera-Variable bush viper | 11% (2/18) | - | - | 11% (2/18) | - | |
Bitis-African Viperidae | 33% (1/3) | - | - | 33% (1/3) | - | |
gabonica-Gaboon Viper | 50% (1/2) | - | - | 50% (1/2) | - | |
nasicornis-Rhinoceros viper | 0% (0/1) | - | - | - | - | |
Macrovipera-European Viperidae | 0% (0/4) | - | - | - | - | |
schweizeri-Cyclades blunt-nosed viper | 0% (0/4) | - | - | - | - | |
Agkistrodon-North American Viperidae | 0% (0/8) | - | - | - | - | |
laticinctus-Broad-banded copperhead | 0% (0/8) | - | - | - | - | |
Crotalus-North American Viperidae | 0% (0/2) | - | - | - | - | |
lepidus-Banded rock rattlesnake | 0% (0/1) | - | - | - | - | |
pyrrhus-Speckled rattlesnake | 0% (0/1) | - | - | - | - | |
Bothriopsis-South American Viperidae | 33% (1/3) | 33% (1/3) | - | - | - | |
bilineata- Two-striped forest pit viper | 33% (1/3) | 33% (1/3) | - | - | - | |
Acanthophis-Australian Elapidae | 33% (1/3) | - | - | 33% (1/3) | - | |
pyrrhus-Desert death adder | 0% (0/1) | - | - | - | - | |
rugosus-Rough-scaled death adder | 50% (1/2) | - | - | 50% (1/2) | - | |
Total | 56% (92/165) | 25% (40/165) | 5% (7 */165) | 27% (44 */165) | 1% (2/165) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tillis, S.B.; Chaney, S.B.; Crouch, E.E.V.; Boyer, D.; Torregrosa, K.; Shuter, A.D.; Armendaris, A.; Childress, A.L.; McAloose, D.; Paré, J.A.; et al. Identification and Characterization of Novel Serpentoviruses in Viperid and Elapid Snakes. Viruses 2024, 16, 1477. https://doi.org/10.3390/v16091477
Tillis SB, Chaney SB, Crouch EEV, Boyer D, Torregrosa K, Shuter AD, Armendaris A, Childress AL, McAloose D, Paré JA, et al. Identification and Characterization of Novel Serpentoviruses in Viperid and Elapid Snakes. Viruses. 2024; 16(9):1477. https://doi.org/10.3390/v16091477
Chicago/Turabian StyleTillis, Steven B., Sarah B. Chaney, Esther E. V. Crouch, Donal Boyer, Kevin Torregrosa, Avishai D. Shuter, Anibal Armendaris, April L. Childress, Denise McAloose, Jean A. Paré, and et al. 2024. "Identification and Characterization of Novel Serpentoviruses in Viperid and Elapid Snakes" Viruses 16, no. 9: 1477. https://doi.org/10.3390/v16091477