Virus Shedding and Diarrhea: A Review of Human Norovirus Genogroup II Infection in Gnotobiotic Pigs
Abstract
:1. Introduction
2. Virus Shedding and Diarrhea Rates in Gn Pigs
2.1. Infection with Pandemic GII.4 Strains of HuNoV
2.1.1. GII.4 Bristol
2.1.2. GII.4 Farmington Hills
2.1.3. GII.4 Den Haag
2.1.4. GII.4 New Orleans
2.1.5. GII.4 Sydney
2.2. Infection with Non-GII.4 Strains of HuNoV
2.2.1. GII.6
2.2.2. GII.12
2.3. Modeling Additional Components of GII Replication
2.3.1. Sector Status and HuNoV Infection
2.3.2. Bacteria and HuNoV Infection
2.3.3. Immunocompromised Health Status and HuNoV Infection
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ludwig-Begall, L.F.; Mauroy, A.; Thiry, E. Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021, 13, 1541. [Google Scholar] [CrossRef]
- Kapikian, A.Z. The discovery of the 27-nm Norwalk virus: An historic perspective. J. Infect. Dis. 2000, 181 (Suppl. S2), S295–S302. [Google Scholar] [CrossRef]
- Estes, M.K.; Ettayebi, K.; Tenge, V.R.; Murakami, K.; Karandikar, U.; Lin, S.C.; Ayyar, B.V.; Cortes-Penfield, N.W.; Haga, K.; Neill, F.H.; et al. Human Norovirus Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid Cultures: Success and Challenges. Viruses 2019, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.L.; Qu, L.; et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Todd, K.V.; Tripp, R.A. Human Norovirus: Experimental Models of Infection. Viruses 2019, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kumar, M.; Santiana, M.; Mishra, A.; Zhang, M.; Labayo, H.; Chibly, A.M.; Nakamura, H.; Tanaka, T.; Henderson, W.; et al. Enteric viruses replicate in salivary glands and infect through saliva. Nature 2022, 607, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, R.G.; Greenberg, H.B.; Dalgard, D.W.; Allen, W.P.; Sly, D.L.; Thornhill, T.S.; Chanock, R.M.; Kapikian, A.Z. Experimental infection of chimpanzees with the Norwalk agent of epidemic viral gastroenteritis. J. Med. Virol. 1978, 2, 89–96. [Google Scholar] [CrossRef]
- Rimkute, I.; Chaimongkol, N.; Woods, K.D.; Nagata, B.M.; Darko, S.; Gudbole, S.; Henry, A.R.; Sosnovtsev, S.V.; Olia, A.S.; Verardi, R.; et al. A non-human primate model for human norovirus infection. Nat. Microbiol. 2024, 9, 776–786. [Google Scholar] [CrossRef]
- Souza, M.; Azevedo, M.S.; Jung, K.; Cheetham, S.; Saif, L.J. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J. Virol. 2008, 82, 1777–1786. [Google Scholar] [CrossRef]
- Cheetham, S.; Souza, M.; Meulia, T.; Grimes, S.; Han, M.G.; Saif, L.J. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J. Virol. 2006, 80, 10372–10381. [Google Scholar] [CrossRef]
- Yuan, L.; Jobst, P.M.; Weiss, M. Gnotobiotic Pigs: From Establishing Facility to Modeling Human Infectious Diseases. In Gnotobiotics; Academic Press: Cambridge, MA, USA, 2017; pp. 349–368. [Google Scholar]
- Cheetham, S. Pathogenesis of Human Norovirus in Gnotobiotic Pigs; The Ohio State University: Columbus, OH, USA, 2006. [Google Scholar]
- Souza, M.; Cheetham, S.M.; Azevedo, M.S.; Costantini, V.; Saif, L.J. Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J. Virol. 2007, 81, 9183–9192. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.; Costantini, V.; Azevedo, M.S.; Saif, L.J. A human norovirus-like particle vaccine adjuvanted with ISCOM or mLT induces cytokine and antibody responses and protection to the homologous GII.4 human norovirus in a gnotobiotic pig disease model. Vaccine 2007, 25, 8448–8459. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.K.; Parreno, V.; Schmidt, P.J.; Lei, S.; Zhong, W.; Jiang, X.; Emelko, M.B.; Yuan, L. Evaluation of the 50% Infectious Dose of Human Norovirus Cin-2 in Gnotobiotic Pigs: A Comparison of Classical and Contemporary Methods for Endpoint Estimation. Viruses 2020, 12, 955. [Google Scholar] [CrossRef]
- Bui, T.; Kocher, J.; Li, Y.; Wen, K.; Li, G.; Liu, F.; Yang, X.; LeRoith, T.; Tan, M.; Xia, M.; et al. Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age. J. Gen. Virol. 2013, 94, 2005–2016. [Google Scholar] [CrossRef]
- Jung, K.; Wang, Q.; Kim, Y.; Scheuer, K.; Zhang, Z.; Shen, Q.; Chang, K.O.; Saif, L.J. The effects of simvastatin or interferon-α on infectivity of human norovirus using a gnotobiotic pig model for the study of antivirals. PLoS ONE 2012, 7, e41619. [Google Scholar] [CrossRef]
- Annamalai, T.; Lu, Z.; Jung, K.; Langel, S.N.; Tuggle, C.K.; Dekkers, J.C.M.; Waide, E.H.; Kandasamy, S.; Saif, L.J. Infectivity of GII.4 human norovirus does not differ between T-B-NK(+) severe combined immunodeficiency (SCID) and non-SCID gnotobiotic pigs, implicating the role of NK cells in mediation of human norovirus infection. Virus Res. 2019, 267, 21–25. [Google Scholar] [CrossRef]
- Park, B.J.; Jung, S.T.; Choi, C.S.; Myoung, J.; Ahn, H.S.; Han, S.H.; Kim, Y.H.; Go, H.J.; Lee, J.B.; Park, S.Y.; et al. Pathogenesis of Human Norovirus Genogroup II Genotype 4 in Post-Weaning Gnotobiotic Pigs. J. Microbiol. Biotechnol. 2018, 28, 2133–2140. [Google Scholar] [CrossRef]
- Jung, K.; Wang, Q.; Chang, K.O.; Saif, L.J. Intestinal colonization with Escherichia fergusonii enhances infectivity of GII.12 human norovirus in gnotobiotic pigs. Viruses Res. 2023, 336, 199219. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Ahn, H.S.; Han, S.H.; Go, H.J.; Kim, D.H.; Choi, C.; Jung, S.; Myoung, J.; Lee, J.B.; Park, S.Y.; et al. Analysis of the Immune Responses in the Ileum of Gnotobiotic Pigs Infected with the Recombinant GII.p12_GII.3 Human Norovirus by mRNA Sequencing. Viruses 2021, 13, 92. [Google Scholar] [CrossRef]
- Kendra, J.A.; Tohma, K.; Ford-Siltz, L.A.; Lepore, C.J.; Parra, G.I. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc. Natl. Acad. Sci. USA 2021, 118, e2015874118. [Google Scholar] [CrossRef]
- Oka, T.; Stoltzfus, G.T.; Zhu, C.; Jung, K.; Wang, Q.; Saif, L.J. Attempts to grow human noroviruses, a sapovirus, and a bovine norovirus in vitro. PLoS ONE 2018, 13, e0178157. [Google Scholar] [CrossRef] [PubMed]
- CaliciNet Data. Available online: https://www.cdc.gov/norovirus/php/reporting/calicinet-data.html (accessed on 24 July 2024).
- Phengma, P.; Khamrin, P.; Jampanil, N.; Yodmeeklin, A.; Ushijima, H.; Maneekarn, N.; Kumthip, K. The emergence of recombinant norovirus GII.12[P16] and predominance of GII.3[P12] strains in pediatric patients with acute gastroenteritis in Thailand, 2019–2020. J. Med. Virol. 2023, 95, e28321. [Google Scholar] [CrossRef] [PubMed]
- Brewer-Jensen, P.D.; Reyes, Y.; Becker-Dreps, S.; González, F.; Mallory, M.L.; Gutiérrez, L.; Zepeda, O.; Centeno, E.; Vielot, N.; Diez-Valcarce, M.; et al. Norovirus Infection in Young Nicaraguan Children Induces Durable and Genotype-Specific Antibody Immunity. Viruses 2022, 14, 2053. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, E.; Brauer, M.; Meyer, P.; du Plessis, N.M.; Avenant, T.; Mans, J. Virus Etiology, Diversity and Clinical Characteristics in South African Children Hospitalised with Gastroenteritis. Viruses 2021, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Saikia, K.; Saharia, N.; Singh, C.S.; Borah, P.P.; Namsa, N.D. Association of histo-blood group antigens and predisposition to gastrointestinal diseases. J. Med. Virol. 2022, 94, 5149–5162. [Google Scholar] [CrossRef] [PubMed]
- Cheetham, S.; Souza, M.; McGregor, R.; Meulia, T.; Wang, Q.; Saif, L.J. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J. Virol. 2007, 81, 3535–3544. [Google Scholar] [CrossRef]
- Jones, M.K.; Watanabe, M.; Zhu, S.; Graves, C.L.; Keyes, L.R.; Grau, K.R.; Gonzalez-Hernandez, M.B.; Iovine, N.M.; Wobus, C.E.; Vinje, J.; et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 2014, 346, 755–759. [Google Scholar] [CrossRef]
- Jones, M.K.; Grau, K.R.; Costantini, V.; Kolawole, A.O.; de Graaf, M.; Freiden, P.; Graves, C.L.; Koopmans, M.; Wallet, S.M.; Tibbetts, S.A.; et al. Human norovirus culture in B cells. Nat. Protoc. 2015, 10, 1939–1947. [Google Scholar] [CrossRef]
- Karst, S.M. The influence of commensal bacteria on infection with enteric viruses. Nat. Rev. Microbiol. 2016, 14, 197–204. [Google Scholar] [CrossRef]
- Magwira, C.A.; Steele, D.; Seheri, M.L. Norovirus diarrhea is significantly associated with higher counts of fecal histo-blood group antigen expressing Enterobacter cloacae among black South African infants. Gut Microbes 2021, 13, 1979876. [Google Scholar] [CrossRef]
- Craig, K.; Dai, X.; Li, A.; Lu, M.; Xue, M.; Rosas, L.; Gao, T.Z.; Niehaus, A.; Jennings, R.; Li, J. A Lactic Acid Bacteria (LAB)-Based Vaccine Candidate for Human Norovirus. Viruses 2019, 11, 213. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Samuel, H.; Twitchell, E.; Bui, T.; Ramesh, A.; Wen, K.; Weiss, M.; Li, G.; Yang, X.; Jiang, X.; et al. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Sci. Rep. 2016, 6, 25017. [Google Scholar] [CrossRef]
- Lei, S.; Twitchell, E.L.; Ramesh, A.K.; Bui, T.; Majette, E.; Tin, C.M.; Avery, R.; Arango-Argoty, G.; Zhang, L.; Becker-Dreps, S.; et al. Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota. J. Gen. Virol. 2019, 100, 1530–1540. [Google Scholar] [CrossRef]
- Kocher, J.; Bui, T.; Giri-Rachman, E.; Wen, K.; Li, G.; Yang, X.; Liu, F.; Tan, M.; Xia, M.; Zhong, W.; et al. Intranasal P particle vaccine provided partial cross-variant protection against human GII.4 norovirus diarrhea in gnotobiotic pigs. J. Virol. 2014, 88, 9728–9743. [Google Scholar] [CrossRef]
- Lei, S.; Ryu, J.; Wen, K.; Twitchell, E.; Bui, T.; Ramesh, A.; Weiss, M.; Li, G.; Samuel, H.; Clark-Deener, S.; et al. Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci. Rep. 2016, 6, 25222. [Google Scholar] [CrossRef] [PubMed]
- Bányai, K.; Estes, M.K.; Martella, V.; Parashar, U.D. Viral gastroenteritis. Lancet 2018, 392, 175–186. [Google Scholar] [CrossRef]
- Green, K.Y. Norovirus infection in immunocompromised hosts. Clin. Microbiol. Infect. 2014, 20, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Kocher, J.; Castellucci, T.B.; Wen, K.; Li, G.; Yang, X.; Lei, S.; Jiang, X.; Yuan, L. Simvastatin Reduces Protection and Intestinal T Cell Responses Induced by a Norovirus P Particle Vaccine in Gnotobiotic Pigs. Pathogens 2021, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Omatola, C.A.; Mshelbwala, P.P.; Okolo, M.O.; Onoja, A.B.; Abraham, J.O.; Adaji, D.M.; Samson, S.O.; Okeme, T.O.; Aminu, R.F.; Akor, M.E.; et al. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines 2024, 12, 590. [Google Scholar] [CrossRef]
- Bartsch, S.M.; Lopman, B.A.; Ozawa, S.; Hall, A.J.; Lee, B.Y. Global Economic Burden of Norovirus Gastroenteritis. PLoS ONE 2016, 11, e0151219. [Google Scholar] [CrossRef]
- Orchard, R.C.; Wilen, C.B.; Doench, J.G.; Baldridge, M.T.; McCune, B.T.; Lee, Y.C.; Lee, S.; Pruett-Miller, S.M.; Nelson, C.A.; Fremont, D.H.; et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 2016, 353, 933–936. [Google Scholar] [CrossRef]
- Pilewski, K.A.; Ford-Siltz, L.A.; Tohma, K.; Kendra, J.A.; Landivar, M.; Parra, G.I. Analysis of Archival Sera from Norovirus-Infected Individuals Demonstrates that Cross-Blocking of Emerging Viruses is Genotype-Specific. J. Infect. Dis. 2024, jiae085. [Google Scholar] [CrossRef] [PubMed]
- Ettayebi, K.; Tenge, V.R.; Cortes-Penfield, N.W.; Crawford, S.E.; Neill, F.H.; Zeng, X.L.; Yu, X.; Ayyar, B.V.; Burrin, D.; Ramani, S.; et al. New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids. mSphere 2021, 6, e01136-20. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L. Vaccine Efficacy Evaluation The Gnotobiotic Pig Model; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Taube, S.; Kolawole, A.O.; Höhne, M.; Wilkinson, J.E.; Handley, S.A.; Perry, J.W.; Thackray, L.B.; Akkina, R.; Wobus, C.E. A mouse model for human norovirus. mBio 2013, 4, e00450-13. [Google Scholar] [CrossRef] [PubMed]
- Wobus, C.E.; Thackray, L.B.; Virgin, H.W.t. Murine norovirus: A model system to study norovirus biology and pathogenesis. J. Virol. 2006, 80, 5104–5112. [Google Scholar] [CrossRef]
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Ramani, S.; Hill, H.; Ferreira, J.; Graham, D.Y. Determination of the 50% human infectious dose for Norwalk virus. J. Infect. Dis. 2014, 209, 1016–1022. [Google Scholar] [CrossRef]
- Robilotti, E.; Deresinski, S.; Pinsky, B.A. Norovirus. Clin. Microbiol. Rev. 2015, 28, 134–164. [Google Scholar] [CrossRef]
- Roth, A.N.; Grau, K.R.; Karst, S.M. Diverse Mechanisms Underlie Enhancement of Enteric Viruses by the Mammalian Intestinal Microbiota. Viruses 2019, 11, 760. [Google Scholar] [CrossRef]
- Reyes, Y.; González, F.; Gutiérrez, L.; Blandón, P.; Centeno, E.; Zepeda, O.; Toval-Ruíz, C.; Lindesmith, L.C.; Baric, R.S.; Vielot, N.; et al. Secretor Status Strongly Influences the Incidence of Symptomatic Norovirus Infection in a Genotype-Dependent Manner in a Nicaraguan Birth Cohort. J. Infect. Dis. 2022, 225, 105–115. [Google Scholar] [CrossRef]
- Frenck, R.; Bernstein, D.I.; Xia, M.; Huang, P.; Zhong, W.; Parker, S.; Dickey, M.; McNeal, M.; Jiang, X. Predicting susceptibility to norovirus GII.4 by use of a challenge model involving humans. J. Infect. Dis. 2012, 206, 1386–1393. [Google Scholar] [CrossRef]
Name | Genotype | Dosage Used (Genome Copies) | Age Tested in Pigs | % Shedding Virus | Shedding Duration | Shedding Peak Titer (Genome Copies/mL) * | % with Diarrhea | Diarrhea Duration | Significance and Implications | Source |
---|---|---|---|---|---|---|---|---|---|---|
HS66 | GII.4 Bristol | P0 **, 2.5 × 106 | 5–7 days | 73% (8/11) | 3 days | NR | 64% (7/11) | 2 days | For the first time, Gn pigs are shown to be susceptible to HuNoV infection and display the range of clinical symptoms. Infectivity of HS66 maintained after two passages in Gn pigs. | Cheetham et al. [12] |
P1, 5 × 102 | 29% (2/7) | 2 days | 86% (6/7) | 3 days | ||||||
P2, 4 × 101 | 50% (2/4) | 2 days | 75% (3/4) | 1 days | ||||||
5.4 × 106 | 5–7 days | 91% (32/35) | 4 days | NR | 84% (27/32) | 4 | Higher doses of HuNoV inoculum increased severity of infection and clinical signs in Gn pigs. | Souza and Cheetham et al. [13] | ||
5.4 × 106 | 33 days | 57% (4/7) | NR | NR | 100% (7/7) | NR | HS66 HuNoV can infect month-old Gn pigs. | Souza and Constantini et al. [14] | ||
Cin2 | GII.4 Farmington Hills | 2 × 106 | 33–34 days | 100% (4/4) | 2.5 days | 6.94 × 103 | 100% (4/4) | 5 days | The ID50 of Cin2 in month-old pigs is 2.51 × 103 RNA copies. This is 25.6-fold lower than GII.4 2006b (6.43 × 104), indicating Cin2 is more infectious in Gn pigs. | Ramesh et al. [15] |
4 × 105 | 100% (4/4) | 1.3 days | 4.57 × 103 | 75% (3/4) | 1.3 days | |||||
2 × 105 | 100% (4/4) | 6.3 days | 4.44 × 104 | 100% (4/4) | 4 days | |||||
8 × 104 | 100% (6/6) | 2.8 days | 1.16 × 104 | 100% (6/6) | 3.8 days | |||||
2 × 104 | 67% (2/3) | 1 day | 8.7 × 101 | 0% (0/3) | 0 days | |||||
3.2 × 103 | 67% (2/3) | 1.3 days | 9.51 × 103 | 33% (1/3) | 1 day | |||||
8 × 102 | 25% (1/4) | 0.5 days | 2.25 × 103 | 0% (0/4) | 0 days | |||||
2006b | GII.4 Den Haag | 2.74 × 103 | 4–5 days | 50% (3/6) | 11% of days *** | 4.34 × 101 | 67% (4/6) | 32% of days *** | Neonates are more susceptible to GII.4/2006b infection than month-old pigs, as indicated by a lower ID50 in the neonates (<2.73 × 103). Treatment of month-old pigs with simvastatin causes the ID50 to decrease, indicating immunosuppressed pigs are also more susceptible to HuNoV infection. | Bui et al. [16] |
2.74 × 105 | 100% (3/3) | 42% of days | 1.09 × 104 | 100% (3/3) | 29% of days | |||||
2.74 × 103 | 33–34 days | 25% (1/4) | 6.3% of days | 1.29 × 101 | 25% (1/4) | NR | ||||
2.74 × 104 | 40% (2/5) | 9% of days | 5.47 × 101 | 0% (0/5) | ||||||
2.74 × 105 | 67% (2/3) | 11% of days | 3.31 × 102 | 0% (0/3) | ||||||
2.74 × 106 | 100% (3/3) | 75% of days | 4.31 × 104 | 67% (2/3) | ||||||
HS194 | GII.4[P4] Den Haag | 2.4 × 109 or 3 × 1010 | 11–13 days | NR | 8.8 days | 6.17 × 104 | 0% (0/10) | 0 | HS194 infection presents asymptomatically in Gn pigs despite inoculation with a very high dose of virus and prolonged fecal virus shedding. | Jung et al. [17] |
HS292 | GII.4 New Orleans | 1.26 × 109 | 8–14 days | NR | 11.6 days | 1.58 × 106 | NR | NR | Based on higher peak titers of virus shedding in pigs, HS292 appears to be more infectious than HS194. However, it is not reported whether HS292 presents asymptomatically like HS194 or not. | Annamalai et al. [18] |
KU131206 | GII.4 | 1 × 105 | 4 weeks | 50% (2/4) | NR | NR | 0% (0/4) | NR | Fecal KU131206 shedding is independent of dosage; however, diarrhea from KU131206 infection is reliant on dosage. | Park et al. [19] |
1 × 106 | 75% (3/4) | 25% (1/4) | ||||||||
1 × 107 | 50% (2/4) | 75% (3/4) | ||||||||
GII.4 Sydney | GII.4 Sydney[P16] | 2 × 105 | 5 or 33 days | 81% (9/11) | 3 days | 8.22 × 103 | 64% (7/11) | 3.83 days | GII.4 Sydney is moderately infectious in two different age groups of pigs. However, as these are pilot studies, future work to elucidate the exact ID50 and DD50 is necessary. | Yuan Lab, unpublished |
GII.6 | GII.6[P7] | 5 × 104 | 5 days | 100% (2/2) | 8.5 days | 2.08 × 105 | 50% (1/2) | 2 days | GII.6 is infectious in neonates and month-old pigs. However, as these are pilot studies, future work to elucidate the exact ID50 and DD50 is necessary. | Yuan Lab, unpublished |
1.5 × 106 | 33 days | 100% (4/4) | 5.75 days | 6.37 × 104 | 100% (4/4) | 8.5 days | ||||
HS206 | GII.12[P33] | 3.16 × 109 | 8–11 days | 100% (6/6) | 7 days | 1 × 106 | 33% (2/6) | 1.8 days | GII.12 is highly infectious in Gn pigs as evidenced by the high incidence and long duration of fecal shedding; however, the associated diarrhea incidence is low and the duration is short. | Jung et al. [20] |
Recom GII.12 GII.3 | GII.3[P12] | 1 × 107 | 4 weeks | 100% (10/10) | 2.4 days | NR | NR | NR | Recom-GII.12-GII.3-infected pigs had a short duration of virus shedding. Further work is needed to identify the diarrhea presentation and confirm replication of the virus as opposed to flow through. | Park et al. [21] |
Name | Variant | Age Tested in Pigs | Methods for Calculating ID50 and DD50 | ID50 (Genome Copies) | DD50 (Genome Copies) | Source |
---|---|---|---|---|---|---|
Cin2 | GII.4 Farmington Hills | 33–34 days | Reed–Muench | 2.51 × 103 | 3.8 × 104 | Ramesh et al. [15] |
Dragstedt–Behrens | 2.45 × 103 | 3.8 × 104 | ||||
Spearman–Karber | 3.31 × 103 | 3.09 × 104 | ||||
Logistic Regression | 2.51 × 103 | 2.18 × 104 | ||||
Exponential | 5.75 × 103 | 5.75 × 104 | ||||
Approximate Beta-Poisson | 2.57 × 103 | 2.13 × 104 | ||||
2006b | GII.4 Den Haag | 4–5 days | Reed–Muench | 2.74 × 103 | NR | Bui et al. [16] |
33–34 days | <2.74 × 103 * |
Name | Genotype | Condition/Treatment/Factor | Results | Source |
---|---|---|---|---|
HS66 | GII.4 Bristol | Histo-blood group antigen expression | A+H+ increases virus shedding and diarrhea relative to A-H- | Cheetham et.al. [29] |
766 | GII.4 | Lactococcus lactis (LAB) with or without expressing HuNoV VP1 | All LAB-colonized pigs shedding similar titers of HuNoV in feces | Craig et al. [34] |
2006b | GII.4 Den Haag | Pre-colonization with Enterobacter cloacae (E. cloacae) | E. cloacae decreases cumulative virus shedding and shedding duration | Lei et al. [35] |
2006b | GII.4 Den Haag | Pre-colonization with human gut microbiome (HGM) sample | HGM increases duration of virus shedding and diarrhea | Lei et al. [36] |
HS206 | GII.12[P33] | Pre-colonization with Escherichia fergusonii (E. fergusonii) | E. fergusonii increases virus shedding duration and cumulative virus shedding | Jung et al., 2023 [26] |
GII.4 Sydney | GII.4 Sydney[P16] | Pre-colonization with E. fergusonii | E. fergusonii increased diarrhea severity but did not significantly increase peak shedding titers | Yuan Lab, unpublished |
Cin2 | GII.4 Farmington Hills | Pre-colonization with E. fergusonii | E. fergusonii increased diarrhea severity but did not significantly increase peak shedding titers | Yuan Lab, unpublished |
2006b | GII.4 Den Haag | Simvastatin | Increased incidence of diarrhea and virus shedding, longer virus shedding and higher peak titers in simvastatin-treated animals | Bui et al. [16] |
2006b | GII.4 Den Haag | Simvastatin | Increased incidence of diarrhea and virus shedding and abolished the partial protective immunity induced by HuNoV P particle vaccine | Kocher et al. [37] |
HS194 | GII.4 Den Haag | Simvastatin | Greater duration and high peak HuNoV titers in simvastatin-treated animals | Jung et al. [17] |
HS292 | GII.4 New Orleans | Severe combined immunodeficiency (SCID) phenotype, T-B-NK+ | No change in incidence of diarrhea or virus shedding when SCID phenotype was used | Annamalai et al. [18] |
2006b | GII.4 Den Haag | RAG2/IL2RG gene knock-out with SCID phenotype, T-B-NK- | RAG2-/IL2RG- pigs had increased and prolonged viral shedding | Lei et al. [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyblade, C.; Yuan, L. Virus Shedding and Diarrhea: A Review of Human Norovirus Genogroup II Infection in Gnotobiotic Pigs. Viruses 2024, 16, 1432. https://doi.org/10.3390/v16091432
Nyblade C, Yuan L. Virus Shedding and Diarrhea: A Review of Human Norovirus Genogroup II Infection in Gnotobiotic Pigs. Viruses. 2024; 16(9):1432. https://doi.org/10.3390/v16091432
Chicago/Turabian StyleNyblade, Charlotte, and Lijuan Yuan. 2024. "Virus Shedding and Diarrhea: A Review of Human Norovirus Genogroup II Infection in Gnotobiotic Pigs" Viruses 16, no. 9: 1432. https://doi.org/10.3390/v16091432