Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins
Abstract
:1. Introduction
2. Viroids
3. Viroids: The Archetype of Further Subviral Pathogens?
4. Prions
5. Satellites and Virusoids
6. Outlook
- Hammerhead ribozymes have been detected in most genomes [16,127]. Retrotransposons with hammerhead ribozymes, called retrozymes, have been found encoded in diverse plant genomes [17] and have stimulated new ideas about the possible origin of viroid and viroid-like RNAs [128,129,130,131]. Viroid-like RNAs, termed mycoviroids, have been detected in fungi [132,133,134].
- In the early 1980s, there was only a minor interest in rare neurodegenerative diseases like kuru, Creutzfeldt–Jakob and Gerstmann–Sträussler–Scheinker in humans and scrapie in sheep, which seems not to be transmissible to humans. This situation changed drastically with Prusiner’s concept of prions and the discovery of the bovine spongiform encephalopathy (BSE) epidemic in the mid-1980s. Later, variant Creutzfeldt–Jakob disease (vCJD) was found to be due to bovine prions. With widespread testing of slaughtered cattle in Europe and elimination of bovine offal as a source of feed for cattle, sheep, and pigs, BSE has been eliminated from the roster of lethal human illnesses.
Author Contributions
Funding
Conflicts of Interest
References
- Crick, F. On protein synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138–163. [Google Scholar]
- Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Diener, T.; Raymer, W. Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. Science 1967, 158, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Diener, T. Potato spindle tuber “virus” IV. A replicating, low molecular weight RNA. Virology 1971, 45, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Diener, T. Viroids: The smallest known agents of infectious disease. Annu. Rev. Microbiol. 1974, 28, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Diener, T. Discovering viroids–a personal perspective. Nat. Rev. Microbiol. 2003, 1, 75–80. [Google Scholar] [CrossRef]
- Bolton, D.; McKinley, M.; Prusiner, S. Identification of a protein that purifies with the scrapie prion. Science 1982, 218, 1309–1311. [Google Scholar] [CrossRef]
- Prusiner, S.; Bolton, D.; Groth, D.; Bowman, K.; Cochran, S.; McKinley, M. Further purification and characterization of scrapie prions. Biochemistry 1982, 21, 6942–6950. [Google Scholar] [CrossRef]
- Diener, T. Is the scrapie agent a viroid? Nat. New. Biol. 1972, 235, 218–219. [Google Scholar] [CrossRef] [PubMed]
- Diener, T.; McKinley, M.; Prusiner, S. Viroids and prions. Proc. Natl. Acad. Sci. USA 1982, 79, 5220–5224. [Google Scholar] [CrossRef]
- Schneider, I. Satellite-like particle of tobacco ringspot virus that resembles tobacco ringspot virus. Science 1969, 166, 1627–1629. [Google Scholar] [CrossRef] [PubMed]
- Schneider, I. Characteristics of a satellite-like virus of tobacco ringspot virus. Virology 1971, 45, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Dissanayaka Mudiyanselage, S.; Park, W.; Wang, M.; Takeda, R.; Liu, B.; Wang, Y. A nuclear import pathway exploited by pathogenic noncoding RNAs. Plant Cell 2022, 34, 3543–3556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qu, J.; Ji, S.; Wallace, A.; Wu, J.; Li, Y.; Gopalan, V.; Ding, B. A land plant-specific transcription factor directly enhances transcription of a pathogenic noncoding RNA template by DNA-dependent RNA polymerase II. Plant Cell 2016, 28, 1094–1107. [Google Scholar] [CrossRef] [PubMed]
- Navarro, B.; Gisel, A.; Rodio, M.; Delgado, S.; Flores, R.; Di Serio, F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012, 70, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Seehafer, C.; Kalweit, A.; Steger, G.; Gräf, S.; Hammann, C. From alpaca to zebrafish: Hammerhead ribozymes wherever you look. RNA 2011, 17, 21–26. [Google Scholar] [CrossRef] [PubMed]
- de la Peña, M.; Cervera, A. Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home. RNA Biol. 2017, 14, 985–991. [Google Scholar] [CrossRef]
- Gago, S.; Elena, S.; Flores, R.; Sanjuán, R. Extremely high mutation rate of a hammerhead viroid. Science 2009, 323, 1308. [Google Scholar] [CrossRef]
- López-Carrasco, A.; Ballesteros, C.; Sentandreu, V.; Delgado, S.; Gago-Zachert, S.; Flores, R.; Sanjuán, R. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathog. 2017, 13, e1006547. [Google Scholar] [CrossRef]
- Itaya, A.; Folimonov, A.; Matsuda, Y.; Nelson, R.; Ding, B. Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. Mol. Plant Micr. Int. 2001, 14, 1332–1334. [Google Scholar] [CrossRef]
- Papaefthimiou, I.; Hamilton, A.; Denti, M.; Baulcombe, D.; Tsagris, M.; Tabler, M. Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res. 2001, 29, 2395–2400. [Google Scholar] [CrossRef] [PubMed]
- Repsilber, D.; Wiese, U.; Rachen, M.; Schröder, A.; Riesner, D.; Steger, G. Formation of metastable RNA structures by sequential folding during transcription: Time-resolved structural analysis of potato spindle tuber viroid (–)-stranded RNA by temperature-gradient gel electrophoresis. RNA 1999, 5, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Loss, P.; Schmitz, M.; Steger, G.; Riesner, D. Formation of a thermodynamically metastable structure containing hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO J. 1991, 10, 719–727. [Google Scholar] [CrossRef]
- Steger, G.; Hofmann, H.; Förtsch, J.; Gross, H.; Randles, J.; Sänger, H.; Riesner, D. Conformational transitions in viroids and virusoids: Comparison of results from energy minimization algorithm and from experimental data. J. Biomol. Struct. Dyn. 1984, 2, 543–571. [Google Scholar] [CrossRef] [PubMed]
- Colpan, M.; Schumacher, J.; Brüggemann, W.; Sänger, H.; Riesner, D. Large-scale purification of viroid RNA using Cs2SO4 gradient centrifugation and high-performance liquid chromatography. Anal. Biochem. 1983, 131, 257–265. [Google Scholar] [CrossRef]
- Mühlbach, H.; Sänger, H. Viroid replication is inhibited by α-amanitin. Nature 1979, 278, 185–188. [Google Scholar] [CrossRef]
- Schindler, I.M.; Mühlbach, H.P. Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: A reevaluation. Plant Sci. 1992, 84, 221–229. [Google Scholar] [CrossRef]
- Palukaitis, P.; Hatta, T.; Alexander, D.; Symons, R. Characterization of a viroid associated with avocado sunblotch disease. Virology 1979, 99, 145–151. [Google Scholar] [CrossRef]
- Gross, H.; Domdey, H.; Lossow, C.; Jank, P.; Raba, M.; Alberty, H.; Sänger, H. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature 1978, 273, 203–208. [Google Scholar] [CrossRef]
- Sänger, H.; Klotz, G.; Riesner, D.; Gross, H.; Kleinschmidt, A. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef] [PubMed]
- Randles, J. Association of two ribonucleic acid species with cadang-cadang disease of coconut palm. Phytopathology 1975, 65, 163–167. [Google Scholar] [CrossRef]
- Randles, J.; Rillo, E.; Diener, T. The viroidlike structure and cellular location of anomalous RNA associated with the cadang-cadang disease. Virology 1976, 74, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Kaesberg, P.; Diener, T. Potato spindle tuber viroid. XII. An investigation of viroid RNA as a messenger for protein synthesis. Virology 1974, 61, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.; Wepprich, R.; Davies, J.; Weathers, L.; Semancik, J. Functional distinctions between the ribonucleic acids from citrus exocortis viroid and plant viruses: Cell-free translation and aminoacylation reactions. Virology 1974, 61, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, K.; Adkar-Purushothama, C.; Tassios, E.; Samiotaki, M.; Andronis, C.; Lisón, P.; Nikolaou, C.; Perreault, J.; Kalantidis, K. Revisiting the non-coding nature of pospiviroids. Cells 2022, 11, 265. [Google Scholar] [CrossRef]
- Diener, T. Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. III. Subcellular location of PSTV-RNA and the question of whether virions exist in extracts or in situ. Virology 1971, 43, 75–89. [Google Scholar] [CrossRef]
- Schumacher, J.; Sänger, H.; Riesner, D. Subcellular localization of viroids in highly purified nuclei from tomato leaf tissue. EMBO J. 1983, 2, 1549–1555. [Google Scholar] [CrossRef]
- Harders, J.; Lukács, N.; Robert-Nicoud, M.; Jovin, T.; Riesner, D. Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. EMBO J. 1989, 8, 3941–3949. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ding, B. Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell 2003, 15, 2566–2577. [Google Scholar] [CrossRef]
- Martin, W. “Spindle tuber,” a new potato trouble. Hints to potato growers. N.Y. State Potato Assoc. 1922, 3, 8. [Google Scholar]
- Schultz, E.; Folsom, D. Transmission, variation, and control of certain degeneration diseases of Irish potatoes. J. Agric. Res. 1923, 25, 43–118. [Google Scholar]
- Bar-Joseph, M. A contribution to the natural history of viroids. Int. Organ. Citrus Virol. Conf. 1996, 13, 226–229. [Google Scholar] [CrossRef]
- Keese, P.; Symons, R. Domains in viroids: Evidence of intermolecular RNA rearrangement and their contribution to viroid evolution. Proc. Natl. Acad. Sci. USA 1985, 82, 4582–4586. [Google Scholar] [CrossRef]
- Wüsthoff, K.; Steger, G. Conserved motifs and domains in members of Pospiviroidae. Cells 2022, 11, 230. [Google Scholar] [CrossRef]
- García-Arenal, F.; Palukaitis, P. Structure and functional relationships of satellite RNAs of cucumber mosaic virus. Curr. Top. Microbiol. Immunol. 1999, 239, 37–63. [Google Scholar] [CrossRef]
- Xu, P.; Roossinck, M. Cucumber mosaic virus D satellite RNA-induced programmed cell death in tomato. Plant Cell 2000, 12, 1079–1092. [Google Scholar] [CrossRef]
- Prody, G.; Bakos, J.; Buzayan, J.; Schneider, I.; Bruening, G. Autolytic processing of dimeric plant virus satellite RNA. Science 1986, 231, 1577–1580. [Google Scholar] [CrossRef]
- Kaper, J.; Waterworth, H. Cucumber mosaic virus associated RNA 5: Causal agent for tomato necrosis. Science 1977, 196, 429–431. [Google Scholar] [CrossRef]
- Waterworth, H.; Kaper, J.; Tousignant, M. CARNA 5. the small cucumber mosaic virus-dependent replicating RNA, regulates disease expression. Science 1979, 204, 845–847. [Google Scholar] [CrossRef]
- Gremer, L.; Schölzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; et al. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science 2017, 358, 116–119. [Google Scholar] [CrossRef]
- Ayers, J.; Lee, J.; Monteiro, O.; Woerman, A.; Lazar, A.; Condello, C.; Paras, N.; Prusiner, S. Different α-synuclein prion strains cause dementia with Lewy bodies and multiple system atrophy. Proc. Natl. Acad. Sci. USA 2022, 119, e2113489119. [Google Scholar] [CrossRef]
- Condello, C.; Maxwell, A.; Castillo, E.; Aoyagi, A.; Graff, C.; Ingelsson, M.; Lannfelt, L.; Bird, T.; Keene, C.; Seeley, W.; et al. Aβ and tau prions feature in the neuropathogenesis of Down syndrome. Proc. Natl. Acad. Sci. USA 2022, 119, e2212954119. [Google Scholar] [CrossRef]
- Artikis, E.; Kraus, A.; Caughey, B. Structural biology of ex vivo mammalian prions. J. Biol. Chem. 2022, 298, 102181. [Google Scholar] [CrossRef]
- Merz, G.; Chalkley, M.; Tan, S.; Tse, E.; Lee, J.; Prusiner, S.; Paras, N.; DeGrado, W.; Southworth, D. Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments. Nat. Commun. 2023, 14, 3048. [Google Scholar] [CrossRef]
- Legname, G.; Baskakov, I.; Nguyen, H.; Riesner, D.; Cohen, F.; DeArmond, S.; Prusiner, S. Synthetic mammalian prions. Science 2004, 305, 673–676. [Google Scholar] [CrossRef]
- Prusiner, S. Prions. Available online: https://www.nobelprize.org/prizes/medicine/1997/prusiner/lecture/ (accessed on 11 January 2024).
- Kellings, K.; Meyer, N.; Mirenda, C.; Prusiner, S.; Riesner, D. Further analysis of nucleic acids in purified scrapie prion preparations by improved return refocusing gel electrophoresis. J. Gen. Virol. 1992, 73, 1025–1029. [Google Scholar] [CrossRef]
- Safar, J.; Kellings, K.; Serban, A.; Groth, D.; Cleaver, J.; Prusiner, S.; Riesner, D. Search for a prion-specific nucleic acid. J. Virol. 2005, 79, 10796–10806. [Google Scholar] [CrossRef]
- Basler, K.; Oesch, B.; Scott, M.; Westaway, D.; Wälchli, M.; Groth, D.; McKinley, M.; Prusiner, S.; Weissmann, C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986, 46, 417–428. [Google Scholar] [CrossRef]
- Gajdusek, D. Unconventional Viruses and the Origin and Disappearance of Kuru. Available online: https://www.nobelprize.org/prizes/medicine/1976/gajdusek/lecture/ (accessed on 11 January 2024).
- Alper, T.; Cramp, W.; Haig, D.; Clarke, M. Does the agent of scrapie replicate without nucleic acid? Nature 1967, 214, 764–766. [Google Scholar] [CrossRef]
- Leopoldt, J. Nützliche und auf Die Erfahrung Gegründete Einleitung zu der Landwirthschaft: Fünf Theile. Mit Kupfer und Baurissen; Christian Friedrich Günther: Berlin/Glogau, Prussia, Germany, 1759; Available online: https://www.digitale-sammlungen.de/en/view/bsb10228944?page=374.375 (accessed on 11 February 2024).
- Brown, P.; Bradley, R. 1755 and all that: A historical primer of transmissible spongiform encephalopathy. BMJ 1998, 317, 1688–1692. [Google Scholar] [CrossRef]
- Watson, J.; Crick, F. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Diener, T.; Raymer, W. Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. II. Characterization and partial purification. Virology 1969, 37, 351–366. [Google Scholar] [CrossRef]
- Semancik, J.; Weathers, L. Exocortis virus of citrus: Association of infectivity with nucleic acid preparations. Virology 1968, 36, 326–328. [Google Scholar] [CrossRef]
- Semancik, J.; Weathers, L. Properties of the infectious forms of exocortis virus of citrus. Phythopathology 1970, 60, 732–736. [Google Scholar] [CrossRef]
- Semancik, J.; Weathers, L. Exocortis virus: An infectious free-nucleic acid plant virus with unusual properties. Virology 1972, 47, 456–466. [Google Scholar] [CrossRef]
- Semancik, J.; Weathers, L. Exocortis disease: Evidence for a new species of “infectious” low molecular weight RNA in plants. Nat. New Biol. 1972, 237, 242–244. [Google Scholar] [CrossRef]
- Sänger, H. An infectious and replicating RNA of low molecular weight: The agent of the exocortis disease of citrus. Adv. Biosc. 1972, 8, 103–116. [Google Scholar] [CrossRef]
- Gross, H.; Domdey, H.; Sänger, H. Comparative oligonucleotide fingerprints of three plant viroids. Nucleic Acids Res. 1977, 4, 2021–2028. [Google Scholar] [CrossRef]
- Singh, A.; Sänger, H. A simple and rapid method for partial purification of viroid and other cellular ribonucleic acids of higher secondary structure. Cell. Mol. Biol. Incl. Cyto. Enzymol. 1979, 25, 291–303. [Google Scholar]
- Singh, R. The discovery and eradication of potato spindle tuber viroid in Canada. VirusDisease 2014, 25, 415–424. [Google Scholar] [CrossRef]
- Riesner, D.; Henco, K.; Rokohl, U.; Klotz, G.; Kleinschmidt, A.; Domdey, H.; Jank, P.; Gross, H.; Sänger, H. Structure and structure formation of viroids. J. Mol. Biol. 1979, 133, 85–115. [Google Scholar] [CrossRef] [PubMed]
- Steger, G.; Perreault, J.P. Structure and associated biological functions of viroids. Adv. Virus Res. 2016, 94, 141–172. [Google Scholar] [CrossRef]
- Henco, K.; Sänger, H.; Riesner, D. Fine structure melting of viroids as studied by kinetic methods. Nucleic Acids Res. 1979, 6, 3041–3059. [Google Scholar] [CrossRef]
- Qu, F.; Heinrich, C.; Loss, P.; Steger, G.; Tien, P.; Riesner, D. Multiple pathways of reversion in viroids for conservation of structural elements. EMBO J. 1993, 12, 2129–2139. [Google Scholar] [CrossRef]
- Schröder, A.; Riesner, D. Detection and analysis of hairpin II, an essential metastable structural element in viroid replication intermediates. Nucleic Acids Res. 2002, 30, 3349–3359. [Google Scholar] [CrossRef]
- Schrader, O.; Baumstark, T.; Riesner, D. A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle. Nucleic Acids Res. 2003, 31, 988–998. [Google Scholar] [CrossRef]
- Schumacher, J.; Randles, J.; Riesner, D. A two-dimensional electrophoretic technique for the detection of circular viroids and virusoids. Anal. Biochem. 1983, 135, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, F.; Owens, R.; Li, S.F.; Matoušek, J.; Pallás, V.; Sano, T.; Verhoeven, J.; Vidalakis, G.; Flores, R. Viroids. Available online: https://ictv.global/report/chapter/viroids/viroids (accessed on 11 January 2024).
- Takahashi, T.; Diener, T. Potato spindle tuber viroid. XIV. Replication in nuclei isolated from infected leaves. Virology 1975, 64, 106–114. [Google Scholar] [CrossRef]
- Branch, A.; Robertson, H. A replication cycle for viroids and other small infectious RNAs. Science 1984, 223, 450–455. [Google Scholar] [CrossRef]
- Owens, R.; Hadidi, A. The remarkable legacy of Theodor O. Diener (1921–2023): Preeminent plant pathologist and the discoverer of viroids. Viruses 2023, 15, 1895. [Google Scholar] [CrossRef]
- Alpers, M. The epidemiology of kuru: Monitoring the epidemic from its peak to its end. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 3707–3713. [Google Scholar] [CrossRef]
- Marsh, R.; Malone, T.; Semancik, J.; Lancaster, W.; Hanson, R. Evidence for an essential DNA component in the Scrapie agent. Nature 1978, 275, 146–147. [Google Scholar] [CrossRef]
- Malone, T.; Marsh, R.; Hanson, R.; Semancik, J. Evidence for the low molecular weight nature of scrapie agent. Nature 1979, 278, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Latarjet, R.; Muel, B.; Haig, D.; Clarke, M.; Alper, T. Inactivation of the scrapie agent by near monochromatic ultraviolet light. Nature 1970, 227, 1341–1343. [Google Scholar] [CrossRef] [PubMed]
- Colby, D.; Prusiner, S. De novo generation of prion strains. Nat. Rev. Microbiol. 2011, 9, 771–777. [Google Scholar] [CrossRef]
- Prusiner, S. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef]
- Kaper, J.; Tousignant, M. Cucumber mosaic virus-associating RNA 5. I. Role of host plant and helper strain in determining amount of associated RNA 5 with virions. Virology 1977, 80, 186–195. [Google Scholar] [CrossRef]
- Habili, N.; Kaper, J. Cucumber mosaic virus-associated RNA 5. VII. Double-stranded form accumulation and disease attenuation in tobacco. Virology 1981, 112, 250–261. [Google Scholar] [CrossRef]
- Tien, P.; Zhang, X.; Qiu, B.; Qin, B.; Wu, G. Satellite RNA for the control of plant diseases caused by cucumber mosaic virus. Ann. Appl. Biol. 1987, 111, 143–152. [Google Scholar] [CrossRef]
- Gallitelli, D.; Vovlas, C.; Martelli, G.; Montasser, M.; Tousignant, M.; Kaper, J. Satellite-mediated protection of tomato against cucumber mosaic virus: II. Field test under natural epidemic conditions in southern Italy. Plant Dis. 1991, 75, 93–95. [Google Scholar] [CrossRef]
- Palukaitis, P.; Roossinck, M. Spontaneous change of a benign satellite RNA of cucumber mosaic virus to a pathogenic variant. Nat. Biotechnol. 1996, 14, 1264–1268. [Google Scholar] [CrossRef]
- Rosenbaum, V.; Riesner, D. Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys. Chem. 1987, 26, 235–246. [Google Scholar] [CrossRef]
- Riesner, D.; Steger, G. Temperature-gradient gel-electrophoresis. In Handbook of RNA Biochemistry; Hartmann, R., Bindereif, A., Schön, A., Westhof, E., Eds.; Wiley-VCH: Weinheim, Germany, 2014; pp. 427–444. [Google Scholar] [CrossRef]
- Tien, P.; Steger, G.; Rosenbaum, V.; Kaper, J.; Riesner, D. Double-stranded cucumovirus associated RNA 5: Experimental analysis of necrogenic and non-necrogenic variants by temperature-gradient gel electrophoresis. Nucleic Acids Res. 1987, 15, 5069–5083. [Google Scholar] [CrossRef]
- Steger, G.; Tien, P.; Kaper, J.; Riesner, D. Double-stranded cucumovirus associated RNA 5: Which sequence variations may be detected by optical melting and temperature-gradient gel electrophoresis? Nucleic Acids Res. 1987, 15, 5085–5103. [Google Scholar] [CrossRef]
- Randles, J.; Steger, G.; Riesner, D. Structural transitions in viroid-like RNAs associated with cadang-cadang disease, velvet tobacco mottle virus, and Solanum nodiflorum mottle virus. Nucleic Acids Res. 1982, 10, 5569–5586. [Google Scholar] [CrossRef]
- Goodman, T.; Nagel, L.; Rappold, W.; Klotz, G.; Riesner, D. Viroid replication: Equilibrium association constant and comparative activity measurements for the viroid-polymerase interactions. Nucleic Acids Res. 1984, 12, 6231–6246. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Clark, M. Infectious low-molecular weight ribonucleic acid from tomato. Biochem. Biophys. Res. Commun. 1971, 44, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, C.; Rathjen, P.; Forster, A.; Symons, R. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 1986, 14, 3627–3640. [Google Scholar] [CrossRef]
- Hadidi, A. Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics. Viruses 2019, 11, 120. [Google Scholar] [CrossRef]
- Adkar-Purushothama, C.; Iyer, P.; Sano, T.; Perreault, J. sRNA Profiler: A user-focused interface for small RNA mapping and profiling. Cells 2021, 10, 1771. [Google Scholar] [CrossRef]
- Raza, A.; Ding, S.; Wu, Q. Culture-independent discovery of viroids by deep sequencing and computational algorithms. Methods Mol. Biol. 2022, 2316, 251–274. [Google Scholar] [CrossRef]
- Nabi, S.; Baranwal, V.; Rao, G.; Mansoor, S.; Vladulescu, C.; Raja, W.; Jan, B.; Alansi, S. High-throughput RNA sequencing of mosaic infected and non-infected apple (Malus × domestica Borkh.) cultivars: From detection to the reconstruction of whole genome of viruses and viroid. Plants 2022, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Ortolá, B.; Daròs, J. Viroids: Non-coding circular RNAs able to autonomously replicate and infect higher plants. Biology 2023, 12, 172. [Google Scholar] [CrossRef]
- Steger, G.; Wüsthoff, K.; Matoušek, J.; Riesner, D. Viroids: Non-coding circular RNAs are tiny pathogens provoking a broad response in host plants. In RNA Structure and Function, RNA Technolgies 14; Barciszewski, J., Ed.; Springer: Cham, Germany, 2023; pp. 295–309. [Google Scholar] [CrossRef]
- Ma, J.; Dissanayaka Mudiyanselage, S.; Hao, J.; Wang, Y. Cellular roadmaps of viroid infection. Trends Microbiol. 2023, 31, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Delgado, S.; Navarro, B.; Serra, P.; Gentit, P.; Cambra, M.; Chiumenti, M.; De Stradis, A.; Di Serio, F.; Flores, R. How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biol. 2019, 16, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Navarro, B.; Delgado, S.; Serra, P.; Di Serio, F. Viroid pathogenesis: A critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol. Rev. 2020, 44, 386–398. [Google Scholar] [CrossRef]
- Di Serio, F.; Owens, R.; Navarro, B.; Serra, P.; Martínez de Alba, Á.; Delgado, S.; Carbonell, A.; Gago-Zachert, S. Role of RNA silencing in plant-viroid interactions and in viroid pathogenesis. Virus Res. 2023, 323, 198964. [Google Scholar] [CrossRef]
- Matoušek, J.; Steinbachová, L.; Drábková, L.; Kocábek, T.; Potěšil, D.; Mishra, A.; Honys, D.; Steger, G. Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase of the degradation processes. Int. J. Mol. Sci. 2020, 21, 3029. [Google Scholar] [CrossRef]
- Matoušek, J.; Wüsthoff, K.; Steger, G. “Pathomorphogenic” changes caused by citrus bark cracking viroid and transcription factor TFIIIA-7ZF variants support viroid propagation in tobacco. Int. J. Mol. Sci. 2023, 24, 7790. [Google Scholar] [CrossRef]
- Huang, Y.W.; Chung-Chi Hu, C.C.; Hsu, Y.H.; Na-Sheng Lin, N.S. Replication of satellites. In Viroids and Satellites; Hadidi, A., Randles, J., Flores, R., Palukaitis, P., Eds.; Academic Press, Elsevier: Amsterdam, The Netherlands, 2017; pp. 577–586. [Google Scholar] [CrossRef]
- Badar, U.; Venkataraman, S.; AbouHaidar, M.; Hefferon, K. Molecular interactions of plant viral satellites. Virus Genes 2021, 57, 1–22. [Google Scholar] [CrossRef]
- Masuta, C.; Shimura, H. Satellite RNAs: Their involvement in pathogenesis and RNA silencing. In Viroids and Satellites; Hadidi, A., Randles, J., Flores, R., Palukaitis, P., Eds.; Academic Press, Elsevier: Amsterdam, The Netherlands, 2017; pp. 587–596. [Google Scholar] [CrossRef]
- Du, Q.; Duan, C.; Zhang, Z.; Fang, Y.; Fang, R.; Xie, Q.; Guo, H. DCL4 targets cucumber mosaic virus satellite RNA at novel secondary structures. J. Virol. 2007, 81, 9142–9151. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Liu, S.; Yu, C.; Li, X.; Yuan, X. A new strategy of using satellite RNA to control viral plant diseases: Post-inoculation with satellite RNA attenuates symptoms derived from pre-infection with its helper virus. Plant. Biotechnol. J. 2019, 17, 1856–1858. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, Q.; Gu, Z.; Liao, Q.; Palukaitis, P.; Du, Z. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res. 2019, 47, 8255–8271. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, F.; Zhu, S. Complex small RNA-mediated regulatory networks between viruses/viroids/satellites and host plants. Virus Res. 2022, 311, 198704. [Google Scholar] [CrossRef]
- Hecker, R.; Colpan, M.; Riesner, D. High-performance liquid chromatography of DNA restriction fragments. J. Chromatogr. 1985, 326, 251–261. [Google Scholar] [CrossRef]
- Colpan, M.; Riesner, D. High performance liquid chromatography of nucleic acids. In Modern Physical Methods in Biochemistry; New Comprehensive Biochemistry; Neuberger, A., van Deenen, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 11, pp. 85–105. [Google Scholar] [CrossRef]
- Hecker, R.; Riesner, D. Chromatographic separation of DNA restriction fragments. J. Chromatogr. B Biomed. Sci. Appl. 1987, 418, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Neri, U.; Roux, S.; Wolf, Y.; Camargo, A.; Krupovic, M.; Simmonds, P.; Kyrpides, N.; Gophna, U.; Dolja, V.; et al. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell 2023, 186, 646–661.e4. [Google Scholar] [CrossRef]
- Diener, T. Viroids: “living fossils” of primordial RNAs? Biol. Direct 2016, 11, 15. [Google Scholar] [CrossRef]
- Moelling, K.; Broecker, F. Viroids and the Origin of Life. Int. J. Mol. Sci. 2021, 22, 3476. [Google Scholar] [CrossRef]
- Flores, R.; Navarro, B.; Serra, P.; Di Serio, F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol. 2022, 8, veab107. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Koonin, E. Viroids and viroid-like circular RNAs: Do they descend from primordial replicators? Life 2022, 12, 103. [Google Scholar] [CrossRef]
- Sun, L.; Hadidi, A. Mycoviroids: Fungi as hosts and vectors of viroids. Cells 2021, 11, 1335. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wei, S.; Bian, R.; Luo, J.; Khan, H.; Tai, H.; Kondo, H.; Hadidi, A.; Andika, I.; Sun, L. Natural cross-kingdom spread of apple scar skin viroid from apple trees to fungi. Cells 2022, 11, 3686. [Google Scholar] [CrossRef] [PubMed]
- Forgia, M.; Navarro, B.; Daghino, S.; Cervera, A.; Gisel, A.; Perotto, S.; Aghayeva, D.; Akinyuwa, M.; Gobbi, E.; Zheludev, I.; et al. Hybrids of RNA viruses and viroid-like elements replicate in fungi. Nat. Commun. 2023, 14, 2591. [Google Scholar] [CrossRef]
- Pisignano, G.; Michael, D.; Visal, T.; Pirlog, R.; Ladomery, M.; Calin, G. Going circular: History, present, and future of circRNAs in cancer. Oncogene 2023, 42, 2783–2800. [Google Scholar] [CrossRef]
- Lindner, G.; Takenaka, K.; Santucci, K.; Gao, Y.; Janitz, M. Protein-coding circular RNAs—Mechanism, detection, and their role in cancer and neurodegenerative diseases. Biochem. Biophys. Res. Commun. 2023, 678, 68–77. [Google Scholar] [CrossRef]
- Singh, S.; Sinha, T.; Panda, A. Regulation of microRNA by circular RNA. Wiley Interdiscip. Rev. RNA 2023, 15, e1820. [Google Scholar] [CrossRef]
- Wang, K.; Choo, Q.; Weiner, A.; Ou, J.; Najarian, R.; Thayer, R.; Mullenbach, G.; Denniston, K.; Gerin, J.; Houghton, M. Structure, sequence and expression of the hepatitis delta (δ) viral genome. Nature 1986, 323, 508–514. [Google Scholar] [CrossRef]
- Chen, P.; Kalpana, G.; Goldberg, J.; Mason, W.; Werner, B.; Gerin, J.; Taylor, J. Structure and replication of the genome of the hepatitis delta virus. Proc. Natl. Acad. Sci. USA 1986, 83, 8774–8778. [Google Scholar] [CrossRef]
- Negro, F.; Lok, A. Hepatitis D: A review. JAMA 2023, 330, 2376–2387. [Google Scholar] [CrossRef] [PubMed]
- Vanwolleghem, T.; Armstrong, P.; Buti, M.; FitzSimons, D.; Valckx, S.; Hendrickx, G.; Van, D. The elimination of hepatitis D as a public health problem: Needs and challenges. J. Viral. Hepat. 2024, 31, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S. Emerging trends in cryo-EM-based structural studies of neuropathological amyloids. J. Mol. Biol. 2023, 435, 168361. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steger, G.; Riesner, D.; Prusiner, S.B. Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins. Viruses 2024, 16, 360. https://doi.org/10.3390/v16030360
Steger G, Riesner D, Prusiner SB. Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins. Viruses. 2024; 16(3):360. https://doi.org/10.3390/v16030360
Chicago/Turabian StyleSteger, Gerhard, Detlev Riesner, and Stanley B. Prusiner. 2024. "Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins" Viruses 16, no. 3: 360. https://doi.org/10.3390/v16030360