Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples and Pathogeny Identification
2.2. Virus Isolation
2.3. RNA Extraction and Viruses Detection
2.4. Indirect Fluorescent Antibody Assay
2.5. Whole Genome Sequencing and Genetic Variation Analysis of HQ-22
2.6. The Pathogenicity of HQ-22 in Goslings
2.7. The Pathogenicity of HQ-22 in Mice
2.8. Histopathology and Immunohistochemistry
2.9. Statistical Analysis
3. Results
3.1. Virus Detection and Virus Isolation
3.2. Phylogenetic and Evolutionary Analyses of TMUV HQ-22
3.3. TMUV HQ-22 Infection in Goslings
3.4. TMUV HQ-22 Infection in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Chen, S.; Mahalingam, S.; Wang, M.; Cheng, A. An updated review of avian-origin Tembusu virus: A newly emerging avian Flavivirus. J. Gen. Virol. 2017, 98, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lv, C.; Yue, R.; Shi, Y.; Wei, L.; Chai, T.; Liu, S. Effect of age on the pathogenesis of duck tembusu virus in Cherry Valley ducks. Front. Microbiol. 2015, 6, 581. [Google Scholar] [CrossRef] [PubMed]
- Platt, G.S.; Way, H.J.; Bowen, E.T.; Simpson, D.I.; Hill, M.N.; Kamath, S.; Bendell, P.J.; Heathcote, O.H. Arbovirus infections in Sarawak, October 1968–February 1970 Tembusu and Sindbis virus isolations from mosquitoes. Ann. Trop. Med. Parasitol. 1975, 69, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Pandey, B.D.; Karabatsos, N.; Cropp, B.; Tagaki, M.; Tsuda, Y.; Ichinose, A.; Igarashi, A. Identification of a flavivirus isolated from mosquitos in Chiang Mai Thailand. Southeast Asian J. Trop. Med. Public Health 1999, 30, 161–165. [Google Scholar] [PubMed]
- Kono, Y.; Tsukamoto, K.; Abd Hamid, M.; Darus, A.; Lian, T.C.; Sam, L.S.; Yok, C.N.; Di, K.B.; Lim, K.T.; Yamaguchi, S.; et al. Encephalitis and retarded growth of chicks caused by Sitiawan virus, a new isolate belonging to the genus Flavivirus. Am. J. Trop. Med. Hyg. 2000, 63, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhang, C.; Liu, Y.; Liu, Y.; Ye, W.; Han, J.; Ma, G.; Zhang, D.; Xu, F.; Gao, X.; et al. Tembusu virus in ducks, china. Emerg. Infect. Dis. 2011, 17, 1873–1875. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Zhao, Y.; Zhang, X.; Xu, D.; Dai, X.; Teng, Q.; Yan, L.; Zhou, J.; Ji, X.; Zhang, S.; et al. An infectious disease of ducks caused by a newly emerged Tembusu virus strain in mainland China. Virology. 2011, 417, 1–8. [Google Scholar] [CrossRef]
- Su, J.; Li, S.; Hu, X.; Yu, X.; Wang, Y.; Liu, P.; Lu, X.; Zhang, G.; Hu, X.; Liu, D.; et al. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PloS ONE 2011, 6, e18106. [Google Scholar] [CrossRef]
- Yan, Z.; Shen, H.; Wang, Z.; Lin, W.; Xie, Q.; Bi, Y.; Chen, F. Isolation and Characterization of a Novel Tembusu Virus Circulating in Muscovy Ducks in South China. Transbound. Emerg. Dis. 2017, 64, e15–e17. [Google Scholar] [CrossRef]
- Qiu, G.; Cui, Y.; Li, Y.; Li, Y.; Wang, Y. The spread of Tembusu virus in China from 2010 to 2019. Virus Res. 2021, 300, 198374. [Google Scholar] [CrossRef]
- Thontiravong, A.; Ninvilai, P.; Tunterak, W.; Nonthabenjawan, N.; Chaiyavong, S.; Angkabkingkaew, K.; Mungkundar, C.; Phuengpho, W.; Oraveerakul, K.; Amonsin, A. Tembusu-Related Flavivirus in Ducks, Thailand. Transbound. Emerg. Dis. 2015, 21, 2164–2167. [Google Scholar] [CrossRef] [PubMed]
- Sanisuriwong, J.; Yurayart, N.; Thontiravong, A.; Tiawsirisup, S. Duck Tembusu virus detection and characterization from mosquitoes in duck farms, Thailand. Transbound. Emerg. Dis. 2020, 67, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Ninvilai, P.; Tunterak, W.; Oraveerakul, K.; Amonsin, A.; Thontiravong, A. Genetic characterization of duck Tembusu virus in Thailand, 2015-2017: Identification of a novel cluster. Transbound Emerg. Dis. 2019, 66, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Ninvilai, P.; Nonthabenjawan, N.; Limcharoen, B.; Tunterak, W.; Oraveerakul, K.; Banlunara, W.; Amonsin, A.; Thontiravong, A. The presence of duck Tembusu virus in Thailand since 2007: A retrospective study. Transbound Emerg. Dis. 2018, 65, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Heinz, F.X.; Stiasny, K. Flaviviruses and flavivirus vaccines. Vaccine 2012, 30, 4301–4306. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Kaneko, C.; Kawakami, R.; Hasebe, R.; Sawa, H.; Yoshii, K.; Kariwa, H. Amino acid 159 of the envelope protein affects viral replication and T-cell infiltration by West Nile virus in intracranial infection. Sci. Rep. 2020, 10, 7168. [Google Scholar] [CrossRef] [PubMed]
- Barrows, N.J.; Campos, R.K.; Liao, K.C.; Prasanth, K.R.; Soto-Acosta, R.; Yeh, S.C.; Schott-Lerner, G.; Pompon, J.; Sessions, O.M.; Bradrick, S.S.A.; et al. Biochemistry and Molecular Biology of Flaviviruses. Chem. Rev. 2018, 118, 4448–4482. [Google Scholar] [CrossRef]
- Dias, R.S.; Teixeira, M.D.; Xisto, M.F.; Prates, J.W.O.; Silva, J.D.D.; Mello, I.O.; Silva, C.C.D.; De Paula, S.O. DENV-3 precursor membrane (prM) glycoprotein enhances E protein immunogenicity and confers protection against DENV-2 infections in a murine model. Hum. Vaccin. Immunother. 2021, 17, 1271–1277. [Google Scholar] [CrossRef]
- Tajima, S.; Taniguchi, S.; Nakayama, E.; Maeki, T.; Inagaki, T.; Saijo, M.; Lim, C.K. Immunogenicity and Protective Ability of Genotype I-Based Recombinant Japanese Encephalitis Virus (JEV) with Attenuation Mutations in E Protein against Genotype V JEV. Vaccines 2021, 9, 1077. [Google Scholar] [CrossRef]
- Cui, Y.; Pan, Y.; Guo, J.; Wang, D.; Tong, X.; Wang, Y.; Li, J.; Zhao, J.; Ji, Y.; Wu, Z.; et al. The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus. Viruses 2022, 14, 1236. [Google Scholar] [CrossRef]
- Yu, K.; Sheng, Z.Z.; Huang, B.; Ma, X.; Li, Y.; Yuan, X.; Qin, Z.; Wang, D.; Chakravarty, S.; Li, F.; et al. Structural, antigenic, and evolutionary characterizations of the envelope protein of newly emerging Duck Tembusu Virus. PLoS ONE 2013, 8, e71319. [Google Scholar] [CrossRef] [PubMed]
- Hamel, R.; Phanitchat, T.; Wichit, S.; Morales Vargas, R.E.; Jaroenpool, J.; Diagne, C.T.; Pompon, J.; Missé, D. New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Ti, J.; Zhang, L.; Li, Z.; Zhao, D.; Zhang, Y.; Li, F.; Diao, Y. Effect of age and inoculation route on the infection of duck Tembusu virus in Goslings. Vet. Microbiol. 2015, 181, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, Z.; Lv, X.; Huang, R.; Gu, X.; Zhang, C.; Zhang, M.; Wei, J.; Wu, Q.; Li, J.; et al. A novel Tembusu virus isolated from goslings in China form a new subgenotype 2.1.1. Transbound. Emerg. Dis. 2022, 69, 1782–1793. [Google Scholar] [CrossRef]
- Yu, Z.; Ren, H.; Sun, M.; Xie, W.; Sun, S.; Liang, N.; Wang, H.; Ying, X.; Sun, Y.; Wang, Y.; et al. Tembusu virus infection in laying chickens: Evidence for a distinct genetic cluster with significant antigenic variation. Transbound. Emerg. Dis. 2022, 69, e1130–e1141. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Li, X.; Wang, Z.; Liu, X.; Dong, X.; Fu, R.; Su, X.; Xu, B.; Teng, Q.; Yuan, C.; et al. The emergence of a disease caused by a mosquito origin Cluster 3.2 Tembusu virus in chickens in China. Vet. Microbiol. 2022, 272, 109500. [Google Scholar] [CrossRef]
- Tang, Y.; Diao, Y.; Yu, C.; Gao, X.; Ju, X.; Xue, C.; Liu, X.; Ge, P.; Qu, J.; Zhang, D. Characterization of a Tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in Northern China. Transbound. Emerg. Dis. 2013, 60, 152–158. [Google Scholar] [CrossRef]
- Liu, P.; Lu, H.; Li, S.; Moureau, G.; Deng, Y.Q.; Wang, Y.; Zhang, L.; Jiang, T.; de Lamballerie, X.; Qin, C.F.; et al. Genomic and antigenic characterization of the newly emerging Chinese duck egg-drop syndrome flavivirus: Genomic comparison with Tembusu and Sitiawan viruses. J. Gen. Virol. 2012, 93 Pt 10, 2158–2170. [Google Scholar] [CrossRef]
- Wang, H.J.; Li, X.F.; Liu, L.; Xu, Y.P.; Ye, Q.; Deng, Y.Q.; Huang, X.Y.; Zhao, H.; Qin, E.D.; Shi, P.Y.; et al. The Emerging Duck Flavivirus Is Not Pathogenic for Primates and Is Highly Sensitive to Mammalian Interferon Antiviral Signaling. J. Virol. 2016, 90, 6538–6548. [Google Scholar] [CrossRef]
- Yurayart, N.; Ninvilai, P.; Chareonviriyaphap, T.; Kaewamatawong, T.; Thontiravong, A.; Tiawsirisup, S. Pathogenesis of Thai duck Tembusu virus in BALB/c mice: Descending infection and neuroinvasive virulence. Transbound. Emerg. Dis. 2021, 68, 3529–3540. [Google Scholar] [CrossRef]
- Mao, L.; He, Y.; Wu, Z.; Wang, X.; Guo, J.; Zhang, S.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; et al. Stem-Loop I of the Tembusu Virus 3’-Untranslated Region Is Responsible for Viral Host-Specific Adaptation and the Pathogenicity of the Virus in Mice. Microbiol. Spectr. 2022, 10, e0244922. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Gao, X.; Diao, Y.; Feng, Q.; Chen, H.; Liu, X.; Ge, P.; Yu, C. Tembusu virus in human, China. Transbound. Emerg. Dis. 2013, 60, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Guo, X.; Fu, S.; Feng, Y.; Tao, X.; Gao, X.; Song, J.; Yang, Z.; Zhou, H.; Liang, G. The genetic characteristics and evolution of Tembusu virus. Vet. Microbiol. 2017, 201, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Hamel, R.; Vargas, R.E.M.; Rajonhson, D.M.; Yamanaka, A.; Jaroenpool, J.; Wichit, S.; Missé, D.; Kritiyakan, A.; Chaisiri, K.; Morand, S.; et al. Identification of the Tembusu Virus in Mosquitoes in Northern Thailand. Viruses 2023, 15, 1447. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.Y.; Tang, H.; Xiong, W.J.; Liu, T.N.; Li, J.Y.; Xia, J.Y.; Xiao, C.T. Isolation and characterization of a novel goose ovaritis-associated cluster 3 Tembusu virus. Poult. Sci. 2023, 102, 102867. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hu, Z.; Dong, J.; Li, L.; Zhang, J.; Kuang, R.; Gao, S.; Sun, M.; Liao, M. Chicken-origin Cluster 3.2 Tembusu virus exhibits higher infectivity than duck-origin Cluster 2 Tembusu virus in chicks. Front. Vet. Sci. 2023, 10, 1152802. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Hang, T.; Yang, L.M.; Xue, J.B.; Fujita, R.; Feng, X.S.; Jiang, T.G.; Zhang, Y.; Li, S.Z.; Zhou, X.N. Long-distance spread of Tembusu virus, and its dispersal in local mosquitoes and domestic poultry in Chongming Island, China. Infect. Dis. Poverty 2023, 12, 52. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, M.; Yu, S.; Zhang, C.; Fang, T.; Liu, D.; Jia, B.; Zhu, M.; Wang, B.; Wang, Q.; et al. Antiviral and virucidal activities of lycorine on duck tembusu virus in vitro by blocking viral internalization and entry. Poult. Sci. 2021, 100, 101404. [Google Scholar] [CrossRef]
- Liu, P.; Lu, H.; Li, S.; Wu, Y.; Gao, G.F.; Su, J. Duck egg drop syndrome virus: An emerging Tembusu-related flavivirus in China. Sci. China Life Sci. 2013, 56, 701–710. [Google Scholar] [CrossRef]
- Yu, G.; Lin, Y.; Tang, Y.; Diao, Y. Evolution of Tembusu Virus in Ducks, Chickens, Geese, Sparrows, and Mosquitoes in Northern China. Viruses 2018, 10, 485. [Google Scholar] [CrossRef]
- Zhang, J.; An, D.; Fan, Y.; Tang, Y.; Diao, Y. Effect of TMUV on immune organs of TMUV infected ducklings. Vet. Microbiol. 2021, 255, 109033. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Jin, M.; Yang, L.; Lv, J.; Qu, S.; Meng, R.; Yang, B.; Wang, X.; Zhang, D. Pathogenicity of a Jinding duck-origin cluster 2.1 isolate of Tembusu virus in 3-week-old Pekin ducklings. Vet. Microbiol. 2020, 251, 108870. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, Y.; Liu, Q.; Wang, Y.; Li, G.; Teng, Q.; Zhang, Y.; Liu, S.; Li, Z. Airborne Transmission of a Novel Tembusu Virus in Ducks. J. Clin. Microbiol. 2015, 53, 2734–2736. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yan, P.; Zhou, J.; Teng, Q.; Li, Z. Establishing a TaqMan-based real-time PCR assay for the rapid detection and quantification of the newly emerged duck Tembusu virus. Virol. J. 2011, 8, 464. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Shi, Y.; Wang, H.; Li, G.; Li, X.; Wang, B.; Su, X.; Wang, J.; Teng, Q.; Yang, J.; et al. A Single Mutation at Position 156 in the Envelope Protein of Tembusu Virus Is Responsible for Virus Tissue Tropism and Transmissibility in Ducks. J. Virol. 2018, 92, e00427-18. [Google Scholar] [CrossRef] [PubMed]
- Gibney, K.B.; Colborn, J.; Baty, S.; Bunko Patterson, A.M.; Sylvester, T.; Briggs, G.; Stewart, T.; Levy, C.; Komatsu, K.; MacMillan, K.; et al. Modifiable risk factors for West Nile virus infection during an outbreak—Arizona, 2010. Am. J. Trop. Med. Hyg. 2012, 86, 895–901. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, Z.; Wen, Z.; Liu, Y.; Zeng, C.; Xiao, D.; Ou, M.; Han, Y.; Huang, S.; Liu, D.; et al. Global Epidemiology of Dengue Outbreaks in 1990-2015: A Systematic Review and Meta-Analysis. Front. Cell. Infect. Microbiol. 2017, 7, 317. [Google Scholar] [CrossRef]
- Quan, T.M.; Thao, T.T.N.; Duy, N.M.; Nhat, T.M.; Clapham, H. Estimates of the global burden of Japanese encephalitis and the impact of vaccination from 2000-2015. elife 2020, 9, e51027. [Google Scholar] [CrossRef]
- Sips, G.J.; Wilschut, J.; Smit, J.M. Neuroinvasive flavivirus infections. Rev. Med. Virol. 2012, 22, 69–87. [Google Scholar] [CrossRef]
Primer | Sequence (5′-3′) | Annealing Temperature | Size |
---|---|---|---|
TMUV-F | CTGATGGCTTTGGTCCTGTTC | 52 °C | 404 bp |
TMUV-R | ACACCTATTCTCACCACATCTAAC | ||
TMUV-RT-qPCR-F | ACACCTATTCTCACCACATCTAAC | 60 °C | 180 bp |
TMUV-RT-qPCR-R | TAACAAGTGGCAGAGCAAGGG | ||
GAstV-F | AGAAGGTGCGGAAGAGTGGTATGA | 55 °C | 300 bp |
GAstV-R | GCGAAGAGTGCGTAAGAGGTTGT | ||
GPV-F | CCAAGCTACAACAACCACATCTAC | 54 °C | 375 bp |
GPV-R | CTGCGGCAGGGCATAGACATCCGAC | ||
AIV-F | TTCTAACCCAGGTCGAAAC | 51 °C | 229 bp |
AIV-R | AAGCCTCTACGCTGCACTCC | ||
ARV-F | TCTCGAGATCTAACTAGATCTGA | 55 °C | 519 bp |
ARV-R | CGTGTCCAACACCAAGTAAACAC |
Primer | Sequence (5′-3′) | Annealing Temperature | Size |
---|---|---|---|
T1-F | AGAAGTCCATCTGTGTGAAC | 51 °C | 1426 bp |
T1-R | GGCTGAATAATTATGGTAG | ||
T2-F | TTGTTTGGAAAGGGGAGC | 55 °C | 984 bp |
T2-R | TACACCCCCGACTGAGCCAA | ||
T3-F | TGGTTGCTTTGGGTGAC | 51 °C | 1165 bp |
T3-R | CCACTCGCTGTTGTTGTC | ||
T4-F | AATAGACTTCGACTACTGCC | 51 °C | 939 bp |
T4-R | AAAGCCTCACTGACTGG | ||
T5-F | GTCCTTTGGTGTTTGCGGGTTTGC | 58 °C | 1432 bp |
T5-R | GAGTCCGGAAAGGCGTCAGTTGTG | ||
T6-F | CAAAGGTGGAACTGGGAGA | 57 °C | 1002 bp |
T6-R | GAGCGAAGTGGTCAGGAAG | ||
T7-F | AGGATTTTGCGAGTGG | 50 °C | 1213 bp |
T7-R | TGGAGGTTCCGAGATAT | ||
T8-F | GCCGTATCTGGAATGCAACTACGGC | 60 °C | 1434 bp |
T8-R | CGACAAGACTCCAGAATTCTGGGTC | ||
T9-F | GCCATGTTTGAGGAGC | 50 °C | 1462 bp |
T9-R | AGCTTTCAATGGGTTTG | ||
T10-F | CCCAATTATGCAGATCA | 59 °C | 1142 bp |
T10-R | AGACTCTGTGTTCTACCAC |
Reference TMUVs | Accession No. | Year of Collection | Location | Host | (ORF) Nucleotide Identity | (ORF) Amino Acid Identity | (C) Nucleotide Identity | (C) Amino Acid Identity | (PrM) Nucleotide Identity | (PrM) Amino Acid Identity | (E) Nucleotide Identity | (E) Amino Acid Identity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster 3 | ||||||||||||
CTLN | MZ355579 | 2020 | China | chicken | 99.2% | 99.8% | 98.6% | 99.2% | 99.4% | 100% | 99.1% | 99.8% |
GX 2021 | OM240641 | 2021 | China | chicken | 99.1% | 99.6% | 98.1% | 99.2% | 99.2% | 100% | 99.1% | 99.4% |
HNU-NX2-2019 | OP186478 | 2019 | China | goose | 97.7% | 99.3% | 98.1% | 99.2% | 97.2% | 100% | 97.7% | 99.0% |
YN12193 | KT607936 | 2012 | China | mosquito | 97.3% | 99.3% | 97.8% | 98.3% | 97.4% | 100% | 97.5% | 99.4% |
YN12115 | KT607935 | 2012 | China | mosquito | 93.1% | 98.2% | 95.3% | 96.7% | 93.8% | 98.8% | 93.8% | 97.2% |
SD14 | MH748542 | 2014 | China | duck | 93.7% | 97.6% | 93.6% | 95.0% | 94.2% | 96.4% | 93.3% | 95.0% |
DK/TH/CU-56 | MK276427 | 2016 | Thailand | duck | — | — | — | — | — | — | 98.3% | 99.4% |
P49_TH_2019 | ON254216 | 2019 | Thailand | mosquito | — | — | — | — | — | — | 96.2% | 97.4% |
P73_TH_2019 | OQ543571 | 2019 | Thailand | mosquito | — | — | — | — | — | — | 98.6% | 99.0% |
TMUV | ||||||||||||
MM1775 | JX477685 | 1955 | Malasia | mosquito | 89.6% | 97.5% | 93.9% | 97.5% | 91.6% | 100% | 88.8% | 96.8% |
Sitiawan virus | JX477686 | 2000 | Malasia | chicken | 88.1% | 97.2% | 91.9% | 96.7% | 86.2% | 97.0% | 87.2% | 96.8% |
TP1906 | MN747003 | 2019 | China | mosquito | 87.4% | 98.1% | 91.4% | 97.5% | 87.0% | 98.8% | 86.5% | 96.8% |
1080905 | MW922032 | 2019 | China | duck | 87.3% | 97.1% | 91.1% | 96.7% | 86.6% | 98.2% | 86.2% | 96.2% |
NTUC225/20 | MW821486 | 2020 | China | goose | 87.3% | 97.0% | 91.1% | 96.7% | 86.8% | 98.2% | 86.3% | 96.6% |
Cluster 1 | ||||||||||||
D1977/1/MY | KX097989 | 2012 | China | duck | 89.6% | 96.4% | 91.9% | 95.0% | 90.0% | 97.5% | 89.5% | 95.8% |
D1921/1/3/MY | KX097990 | 2012 | Malasia | duck | 89.6% | 96.4% | 91.7% | 95.0% | 89.8% | 97.6% | 89.3% | 95.8% |
DK/TH/CU-DTMUV2007 | MF621927 | 2007 | Thailand | duck | 89.8% | 96.6% | 91.9% | 94.2% | 89.0% | 97.6% | 89.9% | 96.4% |
Cluster 2.1 | ||||||||||||
AQ-19 | MT708901 | 2019 | China | goose | 88.9% | 96.4% | 90.3% | 94.2% | 88.0% | 97.6% | 88.1% | 95.6% |
H | MT108702 | 2019 | China | duck | 88.9% | 96.4% | 90.6% | 94.2% | 88.0% | 97.6% | 88.1% | 95.8% |
LJ-20 | MW367213 | 2020 | China | duck | 88.8% | 96.3% | 90.0% | 93.3% | 87.6% | 97.6% | 88.2% | 95.8% |
DK/TH/CU-1 | KR061333 | 2013 | Thailand | mosquito | 89.4% | 96.7% | 90.6% | 94.2% | 88.6% | 97.6% | 89.0% | 95.8% |
KPS54A61/THA | KF573582 | 2013 | Thailand | duck | 89.4% | 96.6% | 91.1% | 94.2% | 89.6% | 97.6% | 88.9% | 95.8% |
AH201501 | KY623431 | 2015 | China | duck | 89.1% | 96.6% | 91.4% | 94.2% | 88.2% | 97.6% | 88.9% | 95.8% |
GX2013C | KP861859 | 2013 | China | duck | 89.3% | 96.5% | 91.1% | 93.3% | 89.0% | 97.6% | 88.6% | 95.0% |
GA | MK907880 | 2018 | China | duck | 88.9% | 96.3% | 91.1% | 94.2% | 87.8% | 96.4% | 88.5% | 95.0% |
Cluster 2.2 | ||||||||||||
JXSP | JQ920423 | 2012 | China | duck | 89.5% | 96.8% | 90.8% | 94.2% | 89.0% | 97.6% | 89.5% | 96.0% |
AH-F10 | KM102539 | 2010 | China | duck | 89.5% | 96.7% | 90.6% | 93.3% | 89.2% | 97.6% | 89.2% | 96.2% |
FX2010 | KY623434 | 2010 | China | duck | 89.6% | 96.8% | 91.4% | 94.2% | 89.6% | 97.6% | 89.5% | 96.0% |
HZ2-2015 | KX686574 | 2015 | China | duck | 89.0% | 96.5% | 91.7% | 93.3% | 88.0% | 97.0% | 88.8% | 95.6% |
P4 | MZ574097 | 2019 | China | duck | 89.5% | 96.7% | 91.1% | 94.2% | 89.2% | 97.6% | 89.4% | 96.0% |
NMCF | MH764607 | 2017 | China | duck | 89.6% | 96.8% | 90.6% | 94.2% | 88.8% | 97.6% | 89.1% | 95.8% |
TMUV-JSGo | AB917090 | 2012 | China | goose | 89.4% | 96.8% | 90.8% | 94.2% | 88.8% | 97.6% | 89.5% | 96.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Ding, Y.; Yao, W.; Chen, S.; Jiang, Y.; Yang, L.; Bao, G.; Yang, K.; Fan, S.; Du, Q.; et al. Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese. Viruses 2023, 15, 2449. https://doi.org/10.3390/v15122449
Yang Q, Ding Y, Yao W, Chen S, Jiang Y, Yang L, Bao G, Yang K, Fan S, Du Q, et al. Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese. Viruses. 2023; 15(12):2449. https://doi.org/10.3390/v15122449
Chicago/Turabian StyleYang, Qing, Yingying Ding, Weiping Yao, Shuyue Chen, Yaqian Jiang, Linping Yang, Guangbin Bao, Kang Yang, Shinuo Fan, Qingqing Du, and et al. 2023. "Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese" Viruses 15, no. 12: 2449. https://doi.org/10.3390/v15122449
APA StyleYang, Q., Ding, Y., Yao, W., Chen, S., Jiang, Y., Yang, L., Bao, G., Yang, K., Fan, S., Du, Q., Wang, Q., & Wang, G. (2023). Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese. Viruses, 15(12), 2449. https://doi.org/10.3390/v15122449