Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component
Abstract
:1. Introduction
2. Antimicrobial Peptides (AMPs) in Scorpion Venoms
2.1. Peptides with Antibacterial Activity (ABPs)
2.2. Peptides with Antifungal Activity (AFPs)
2.3. Peptides with Antiviral Activity (AVPs)
2.4. Peptides with Antiparasitic Activity (APPs)
3. Discussion
4. Expectations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Martínez, C.; Juárez, R.I.; Téllez, R.; Paredes, M.A.; Herrera, M.d.R.; Giono, S. Resistencia a la meticilina y producción de biopelícula en aislamientos clínicos de staphylococcus aureus y staphylococcus coagulasa negativa en méxico. Biomédica 2019, 39, 513–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piddock, L.J. Reflecting on the final report of the o’neill review on antimicrobial resistance. Lancet Infect. Dis. 2016, 16, 767–768. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Sanz-García, F.; Hernando-Amado, S.; Martínez, J.L. Mutational evolution of Pseudomonas aeruginosa resistance to ribosome-targeting antibiotics. Front. Genet. 2018, 9, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, M.; Anju, C.; Biswas, L.; Kumar, V.A.; Mohan, C.G.; Biswas, R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol. 2016, 306, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hu, P.; Wu, W.; Wang, Y. Peptides with therapeutic potential in the venom of the scorpion buthus martensii karsch. Peptides 2019, 115, 43–50. [Google Scholar] [CrossRef]
- Ding, J.; Chua, P.-J.; Bay, B.-H.; Gopalakrishnakone, P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp. Biol. Med. 2014, 239, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Harrison, P.L.; Strong, P.N. Snapshots of scorpion venomics. J. Arid. Environ. 2015, 112, 170–176. [Google Scholar] [CrossRef]
- Khattabi, A.; Soulaymani-Bencheikh, R.; Achour, S.; Salmi, L.-R. Classification of clinical consequences of scorpion stings: Consensus development. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.J.; Ellsworth, S.A.; Nystrom, G.S. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018, 151, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, W.R. The evolution and distribution of noxious species of scorpions (arachnida: Scorpiones). J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chippaux, J.-P.; Goyffon, M. Epidemiology of scorpionism: A global appraisal. Acta Trop. 2008, 107, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Megdad-Lamraoui, A.; Adi-Bessalem, S.; Laraba-Djebari, F. Cerebrospinal inflammatory response following scorpion envenomation: Role of histamine H1 and H3 receptors. Inflammopharmacology 2019, 27, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Issaad, N.; Ait-Lounis, A.; Laraba-Djebari, F. Cytotoxicity and actin cytoskeleton damage induced in human alveolar epithelial cells by androctonus australis hector venom. Toxin Rev. 2018, 37, 67–74. [Google Scholar] [CrossRef]
- Laraba-Djebari, F.; Adi-Bessalem, S.; Hammoudi-Triki, D. Scorpion venoms: Pathogenesis and biotherapies. In Scorpion Venoms; Gopalakrishnakone, P., Possani, L.D., Schwartz, E.F., de la Vega, R.C.R., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 63–85. [Google Scholar]
- Giovannini, C.; Baglioni, M.; Baron Toaldo, M.; Cescon, M.; Bolondi, L.; Gramantieri, L. Vidatox 30 ch has tumor activating effect in hepatocellular carcinoma. Sci. Rep. 2017, 7, 44685. [Google Scholar] [CrossRef] [Green Version]
- Akef, H.M. Anticancer and antimicrobial activities of scorpion venoms and their peptides. Toxin Rev. 2019, 38, 41–53. [Google Scholar] [CrossRef]
- Harrison, P.L.; Abdel-Rahman, M.A.; Miller, K.; Strong, P.N. Antimicrobial peptides from scorpion venoms. Toxicon 2014, 88, 115–137. [Google Scholar] [CrossRef]
- Corzo, G.; Escoubas, P.; Villegas, E.; Barnham, K.J.; He, W.; Norton, R.S.; Nakajima, T. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion pandinus imperator. Biochem. J. 2001, 359, 35–45. [Google Scholar] [CrossRef]
- Torres-Larios, A.; Gurrola, G.B.; Zamudio, F.Z.; Possani, L.D. Hadrurin, a new antimicrobial peptide from the venom of the scorpion hadrurus aztecus. Eur. J. Biochem. 2000, 267, 5023–5031. [Google Scholar] [CrossRef]
- Verdonck, A.; Bosteels, S.; Desmet, J.; Moerman, L.; Noppe, W.; Willems, J.; Tytgat, J.; van der Walt, J. A novel class of pore-forming peptides in the venom of parabuthus schlechteri purcell (scorpions: Buthidae). Cimbebasia 2000, 16, 247–260. [Google Scholar]
- Otero-Gonzáiez, A.J.; Magalhaes, B.S.; Garcia-Villarino, M.; López-Abarrategui, C.; Sousa, D.A.; Dias, S.C.; Franco, O.L. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 2010, 24, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Guaní-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol. 2010, 135, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.L. Mecanismos de acción de péptidos antimicrobianos y mecanismos de resistencia de los patógenos. ByPC 2016, 80, 36–43. [Google Scholar]
- Cao, L.; Li, Z.; Zhang, R.; Wu, Y.; Li, W.; Cao, Z. StCT2, a new antibacterial peptide characterized from the venom of the scorpion scorpiops tibetanus. Peptides 2012, 36, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Aponte, C.A.; Silva-Sanchez, J.; Quintero-Hernández, V.; Rodríguez-Romero, A.; Balderas, C.; Possani, L.D.; Gurrola, G.B. Vejovine, a new antibiotic from the scorpion venom of vaejovis mexicanus. Toxicon 2011, 57, 84–92. [Google Scholar] [CrossRef] [PubMed]
- De la Salud Bea, R.; Petraglia, A.F.; Ascuitto, M.R.; Buck, Q.M. Antibacterial activity and toxicity of analogs of scorpion venom isct peptides. Antibiotics 2017, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.-C.; Wang, S.; Nie, Y.; Zhang, L.; Luo, X. Characterization of bmkbpp, a multifunctional peptide from the Chinese scorpion mesobuthus martensii karsch: Gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 2012, 33, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ye, X.; Ding, L.; Zhu, W.; Zhao, Z.; Luo, D.; Liu, N.; Sun, L.; Chen, Z. Identification of the scorpion venom-derived antimicrobial peptide hp1404 as a new antimicrobial agent against carbapenem-resistant acinetobacter baumannii. Microb. Pathog. 2021, 157, 104960. [Google Scholar] [CrossRef]
- Parente, A.; Daniele-Silva, A.; Furtado, A.A.; Melo, M.A.; Lacerda, A.F.; Queiroz, M.; Moreno, C.; Santos, E.; Rocha, H.A.; Barbosa, E.G. Analogs of the scorpion venom peptide stigmurin: Structural assessment, toxicity, and increased antimicrobial activity. Toxins 2018, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Pedron, C.N.; Torres, M.D.T.; da Silva Lima, J.A.; Silva, P.I.; Silva, F.D.; Oliveira, V.X. Novel designed vmct1 analogs with increased antimicrobial activity. Eur. J. Med. Chem. 2017, 126, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Carreto, S.; Jiménez-Vargas, J.M.; Rivas-Santiago, B.; Corzo, G.; Possani, L.D.; Becerril, B.; Ortiz, E. Peptides from the scorpion vaejovis punctatus with broad antimicrobial activity. Peptides 2015, 73, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Scherer, K.M.; Spille, J.-H.; Sahl, H.-G.; Grein, F.; Kubitscheck, U. The lantibiotic nisin induces lipid ii aggregation, causing membrane instability and vesicle budding. Biophys. J. 2015, 108, 1114–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell. Mol. Life Sci. 2013, 70, 3545–3570. [Google Scholar] [CrossRef] [PubMed]
- Steinstraesser, L.; Kraneburg, U.; Jacobsen, F.; Al-Benna, S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 2011, 216, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Conde, R.; Zamudio, F.Z.; Rodríguez, M.H.; Possani, L.D. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000, 471, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Veltri, D.; Kamath, U.; Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34, 2740–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [Green Version]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 2017, 61, e02340-16. [Google Scholar] [CrossRef] [Green Version]
- Pfalzgraff, A.; Brandenburg, K.; Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol. 2018, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Feix, J.B. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2006, 1758, 1245–1256. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Ma, C.; Du, Q.; Wei, R.; Wang, L.; Zhou, M.; Chen, T.; Shaw, C. Two peptides, tsap-1 and tsap-2, from the venom of the brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie 2013, 95, 1784–1794. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, X.; Meng, L.; Zhang, Q.; Cao, L.; Li, W.; Wu, Y.; Cao, Z. Hp1404, a new antimicrobial peptide from the scorpion heterometrus petersii. PLoS ONE 2014, 9, e97539. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.-C.; Zhou, L.; Shi, W.; Luo, X.; Zhang, L.; Nie, Y.; Wang, J.; Wu, S.; Cao, B.; Cao, H. Three new antimicrobial peptides from the scorpion pandinus imperator. Peptides 2013, 45, 28–34. [Google Scholar] [CrossRef]
- Nie, Y.; Zeng, X.-C.; Yang, Y.; Luo, F.; Luo, X.; Wu, S.; Zhang, L.; Zhou, J. A novel class of antimicrobial peptides from the scorpion heterometrus spinifer. Peptides 2012, 38, 389–394. [Google Scholar] [CrossRef]
- Carcamo-Noriega, E.N.; Sathyamoorthi, S.; Banerjee, S.; Gnanamani, E.; Mendoza-Trujillo, M.; Mata-Espinosa, D.; Hernández-Pando, R.; Veytia-Bucheli, J.I.; Possani, L.D.; Zare, R.N. 1, 4-Benzoquinone antimicrobial agents against staphylococcus aureus and mycobacterium tuberculosis derived from scorpion venom. Proc. Natl. Acad. Sci. USA 2019, 116, 12642–12647. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, K.; Zhu, W.; Ye, X.; Ding, L.; Jiang, H.; Li, F.; Chen, Z.; Luo, X. Two new cationic α-helical peptides identified from the venom gland of liocheles australasiae possess antimicrobial activity against methicillin-resistant staphylococci. Toxicon 2021, 196, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Vargas, J.M.; Ramírez-Carreto, S.; Corzo, G.; Possani, L.D.; Becerril, B.; Ortiz, E. Structural and functional characterization of ndbp-4 family antimicrobial peptides from the scorpion mesomexovis variegatus. Peptides 2021, 141, 170553. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Yasuda, A.; Naoki, H.; Corzo, G.; Andriantsiferana, M.; Nakajima, T. Isct, a novel cytotoxic linear peptide from scorpion opisthacanthus madagascariensis. Biochem. Biophys. Res. Commun. 2001, 286, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Cesa-Luna, C.; Muñoz-Rojas, J.; Saab-Rincon, G.; Baez, A.; Morales-García, Y.E.; Juárez-González, V.R.; Quintero-Hernández, V. Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. PLoS ONE 2019, 14, e0222438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, E.; Flores, L.; Rivera, C. Péptidos antibacterianos de los venenos de Hadruroides mauryi y Centruroides margaritatus. Rev. Peru. De Biol. 2008, 15, 139–142. [Google Scholar] [CrossRef]
- Velásquez, L.; Escobar, E. Purificación y caracterización parcial de una toxina (hm3) del veneno de Hadruroides mauryi (francke y soleglad, 1980)(scorpiones, iuridae). Rev. Peru. De Biol. 2004, 11, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Escobar, E.; Velásquez, L.; Rivera, C. Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (gervais, 1841)(scorpiones: Buthidae). Rev. Peru. De Biol. 2003, 10, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Flores, L.; Pantigoso, C.; Escobar, E. Isolation and characterization of antibacterial peptide from Centruroides margaritatus venom. Rev. Peru. De Biol. 2010, 17, 129–132. [Google Scholar]
- Zerouti, K.; Khemili, D.; Laraba-Djebari, F.; Hammoudi-Triki, D. Nontoxic fraction of scorpion venom reduces bacterial growth and inflammatory response in a mouse model of infection. Toxin Rev. 2019, 40, 310–324. [Google Scholar] [CrossRef]
- Pérez-Delgado, O.; Espinoza-Vergara, M.A.; Castro-Vega, N.A.; Reyes-Montaño, E.A. Evaluación preliminar de actividad antibacteriana in vitro del veneno de escorpión Hadruroides charcasus (karsch, 1879) contra Pseudomonas aeruginosa y staphylococcus aureus. Rev. Del Cuerpo Médico Hosp. Nac. Almanzor Aguinaga Asenjo 2019, 12, 6–12. [Google Scholar] [CrossRef]
- Cao, L.; Dai, C.; Li, Z.; Fan, Z.; Song, Y.; Wu, Y.; Cao, Z.; Li, W. Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS ONE 2012, 7, e40135. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Velazquéz, L.; Romero-Gutierrez, M.; Delgado-Enciso, I.; Dobrovinskaya, O.; Melnikov, V.; Quintero-Hernández, V.; Ceballos-Magaña, S.; Gaitan-Hinojosa, M.; Coronas, F.; Puebla-Perez, A. Comprehensive analysis of venom from the scorpion Centruroides tecomanus reveals compounds with antimicrobial, cytotoxic, and insecticidal activities. Toxicon 2016, 118, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Almaaytah, A.; Zhou, M.; Wang, L.; Chen, T.; Walker, B.; Shaw, C. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, androctonus amoreuxi: Biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides 2012, 35, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Uawonggul, N.; Sukprasert, S.; Incamnoi, P.; Patramanon, R.; Thammasirirak, S.; Preecharram, S.; Bunyatratchata, W.; Kuaprasert, B.; Daduang, J.; Daduang, S. Bacterial overexpression of recombinant heteroscorpine-1 (rhs-1), a toxin from heterometrus laoticus scorpion venom: Trends for antibacterial application and antivenom production. Biochem. Genet. 2014, 52, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Díaz, P.; D'Suze, G.; Salazar, V.; Sevcik, C.; Shannon, J.D.; Sherman, N.E.; Fox, J.W. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon 2009, 54, 802–817. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Tytgat, J. The scorpine family of defensins: Gene structure, alternative polyadenylation and fold recognition. Cell. Mol. Life Sci. CMLS 2004, 61, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Moerman, L.; Bosteels, S.; Noppe, W.; Willems, J.; Clynen, E.; Schoofs, L.; Thevissen, K.; Tytgat, J.; Van Eldere, J.; Van Der Walt, J. Antibacterial and antifungal properties of α-helical, cationic peptides in the venom of scorpions from southern Africa. Eur. J. Biochem. 2002, 269, 4799–4810. [Google Scholar] [CrossRef]
- Gao, B.; Dalziel, J.; Tanzi, S.; Zhu, S. Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino Acids 2018, 50, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, F.; Li, F.; Li, Z.; Lang, Y.; Shen, B.; Wu, Y.; Li, W.; Harrison, P.L.; Strong, P.N. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant gram-positive bacteria. Front. Microbiol. 2018, 9, 1159. [Google Scholar] [CrossRef]
- Daniele-Silva, A.; Rodrigues, S.d.C.S.; Dos Santos, E.C.G.; de Queiroz Neto, M.F.; de Oliveira Rocha, H.A.; da Silva-Junior, A.A.; Resende, J.M.; Araújo, R.M.; de Freitas Fernandes-Pedrosa, M. NMR three-dimensional structure of the cationic peptide stigmurin from Tityus stigmurus scorpion venom: In vitro antioxidant and in vivo antibacterial and healing activity. Peptides 2021, 137, 170478. [Google Scholar] [CrossRef]
- Rautenbach, M.; Troskie, A.M.; Vosloo, J.A. Antifungal peptides: To be or not to be membrane active. Biochimie 2016, 130, 132–145. [Google Scholar] [CrossRef]
- Swidergall, M.; Ernst, J.F. Interplay between candida albicans and the antimicrobial peptide armory. Eukaryot. Cell 2014, 13, 950–957. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.A.; Ishikiriama, B.L.C.; Ribeiro Lopes, M.M.; de Castro, R.D.; Garcia, C.R.; Porto, V.C.; Santos, C.F.; Neppelenbroek, K.H.; Lara, V.S. Antifungal activity of punicalagin–nystatin combinations against candida albicans. Oral Dis. 2020, 26, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Poon, I.K.; Baxter, A.A.; Lay, F.T.; Mills, G.D.; Adda, C.G.; Payne, J.A.; Phan, T.K.; Ryan, G.F.; White, J.A.; Veneer, P.K. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 2014, 3, e01808. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.M.; Bleackley, M.R.; Wiltshire, J.L.; Anderson, M.A.; Traven, A.; van der Weerden, N.L. Identification and mechanism of action of the plant defensin nad1 as a new member of the antifungal drug arsenal against candida albicans. Antimicrob. Agents Chemother. 2013, 57, 3667–3675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanternier, F.; Boutboul, D.; Menotti, J.; Chandesris, M.; Sarfati, C.; Mamzer Bruneel, M.; Calmus, Y.; Mechai, F.; Viard, J.; Lecuit, M. Microsporidiosis in solid organ transplant recipients: Two Enterocytozoon bieneusi cases and review. Transpl. Infect. Dis. 2009, 11, 83–88. [Google Scholar] [CrossRef]
- Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012, 2012, 713687. [Google Scholar] [CrossRef]
- Flückiger, U.; Marchetti, O.; Bille, J.; Eggimann, P.; Zimmerli, S.; Imhof, A.; Garbino, J.; Ruef, C.; Pittet, D.; Täuber, M. Treatment options of invasive fungal infections in adults. Swiss Med. Wkly. 2006, 136, 447–463. [Google Scholar]
- Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A. New antibiotics for bad bugs: Where are we? Ann. Clin. Microbiol. Antimicrob. 2013, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Sipsas, N.V.; Kontoyiannis, D.P. Invasive fungal infections in patients with cancer in the intensive care unit. Int. J. Antimicrob. Agents 2012, 39, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Coronado, N.D.; Pérez-Delgado, O. Actividad antifúngica in vitro del extracto crudo diluido del veneno de escorpión Hadruroides charcasus (karsch 1879) frente a candida albicans. J. Selva Andin. Res. Soc. 2019, 10, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Carreto, S.; Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Corzo, G.; Possani, L.D.; Becerril, B.; Ortiz, E. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family vaejovidae. Peptides 2012, 34, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Ehret-Sabatier, L.; Loew, D.; Goyffon, M.; Fehlbaum, P.; Hoffmann, J.A.; van Dorsselaer, A.; Bulet, P. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J. Biol. Chem. 1996, 271, 29537–29544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Melo, E.T.; Estrela, A.B.; Santos, E.C.G.; Machado, P.R.L.; Farias, K.J.S.; Torres, T.M.; Carvalho, E.; Lima, J.P.M.S.; Silva-Júnior, A.A.; Barbosa, E.G. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides 2015, 68, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtado, A.A.; Daniele-Silva, A.; da Silva-Júnior, A.A.; de Freitas Fernandes-Pedrosa, M. Biology, venom composition, and scorpionism induced by brazilian scorpion Tityus stigmurus (thorell, 1876) (scorpiones: Buthidae): A mini-review. Toxicon 2020, 185, 36–45. [Google Scholar] [CrossRef]
- Torres-Rego, M.; Glaucia-Silva, F.; Soares, K.S.R.; de Souza, L.B.F.C.; Damasceno, I.Z.; dos Santos-Silva, E.; Lacerda, A.F.; Chaves, G.M.; da Silva-Junior, A.A.; de Freitas Fernandes-Pedrosa, M. Biodegradable cross-linked chitosan nanoparticles improve anti-candida and anti-biofilm activity of tisth, a peptide identified in the venom gland of the tityus stigmurus scorpion. Mater. Sci. Eng. C 2019, 103, 109830. [Google Scholar] [CrossRef]
- Guilhelmelli, F.; Vilela, N.; Smidt, K.S.; De Oliveira, M.A.; da Cunha Morales Álvares, A.; Rigonatto, M.C.; da Silva Costa, P.H.; Tavares, A.H.; Freitas, S.M.d.; Nicola, A.M. Activity of scorpion venom-derived antifungal peptides against planktonic cells of candida spp. and cryptococcus neoformans and candida albicans biofilms. Front. Microbiol. 2016, 7, 1844. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.S.; Wiens, M.E.; Smith, J.G. Antiviral mechanisms of human defensins. J. Mol. Biol. 2013, 425, 4965–4980. [Google Scholar] [CrossRef]
- Fung, H.B.; Guo, Y. Enfuvirtide: A fusion inhibitor for the treatment of HIV infection. Clin. Ther. 2004, 26, 352–378. [Google Scholar] [CrossRef]
- Konovalova, M.; Zubareva, A.; Lutsenko, G.; Svirshchevskaya, E. Antimicrobial peptides in health and disease. Appl. Biochem. Microbiol. 2018, 54, 238–244. [Google Scholar] [CrossRef]
- Mata, É.C.G.d.; Mourão, C.B.F.; Rangel, M.; Schwartz, E.F. Antiviral activity of animal venom peptides and related compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Dowd, C.; Zhang, W.; Chaiken, I. Phage randomization in a charybdotoxin scaffold leads to cd4-mimetic recognition motifs that bind HIV-1 envelope through non-aromatic sequences. J. Pept. Res. 2001, 57, 507–518. [Google Scholar] [CrossRef]
- De Silva, H.; Carver, J.; Aronson, J. Pharmacological evidence of calcium-activated and voltage-gated potassium channels in human platelets. Clin. Sci. 1997, 93, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Grissmer, S.; Nguyen, A.N.; Cahalan, M.D. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology. J. Gen. Physiol. 1993, 102, 601–630. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Moczydlowski, E.; Latorre, R.; Phillips, M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 1985, 313, 316–318. [Google Scholar] [CrossRef]
- Banerjee, A.; Lee, A.; Campbell, E.; MacKinnon, R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. Elife 2013, 2, e00594. [Google Scholar] [CrossRef] [PubMed]
- Auguste, P.; Hugues, M.; Grave, B.; Gesquiere, J.; Maes, P.; Tartar, A.; Romey, G.; Schweitz, H.; Lazdunski, M. Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated K+ channels. Chemical synthesis, radiolabeling, and receptor characterization. J. Biol. Chem. 1990, 265, 4753–4759. [Google Scholar] [CrossRef]
- Zhang, W.; Canziani, G.; Plugariu, C.; Wyatt, R.; Sodroski, J.; Sweet, R.; Kwong, P.; Hendrickson, W.; Chaiken, I. Conformational changes of gp120 in epitopes near the ccr5 binding site are induced by cd4 and a cd4 miniprotein mimetic. Biochemistry 1999, 38, 9405–9416. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulou, E.; Vizzavona, J.; Vita, C. Engineering a cd4 mimetic inhibiting the binding of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein gp120 to human lymphocyte cd4 by the transfer of a cd4 functional site to a small natural scaffold. Lett. Pept. Sci. 1998, 5, 241–245. [Google Scholar] [CrossRef]
- da Mata, E.C.; Ombredane, A.; Joanitti, G.A.; Kanzaki, L.; Schwartz, E.F. Antiretroviral and cytotoxic activities of Tityus obscurus synthetic peptide. Arch. Der Pharm. 2020, 353, 2000151. [Google Scholar] [CrossRef]
- Utkin, Y.; Siniavin, A.; Kasheverov, I.; Tsetlin, V. Antiviral effects of animal toxins: Is there a way to drugs? Int. J. Mol. Sci. 2022, 23, 3634. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, L.; Zhong, M.; Zhang, Y.; Han, C.; Li, Q.; Yang, J.; Zhou, D.; Shi, W.; He, B. Anti-HIV-1 activity of a new scorpion venom peptide derivative kn2-7. PLoS ONE 2012, 7, e34947. [Google Scholar] [CrossRef] [Green Version]
- El-Bitar, A.M.; Sarhan, M.M.; Aoki, C.; Takahara, Y.; Komoto, M.; Deng, L.; Moustafa, M.A.; Hotta, H. Virocidal activity of egyptian scorpion venoms against hepatitis c virus. Virol. J. 2015, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, M.; Mitani, N.; Kitanaka, A.; Yakio, M.; Chen, M.; Nishimoto, S.; Uchiyama, H.; Sue, M.; Hotta, H.; Nakagawa, Y. Identification of an antiviral component from the venom of the scorpion liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon 2021, 191, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Zhao, Z.; He, Y.; Wu, L.; Cai, D.; Hong, W.; Wu, Y.; Cao, Z.; Zheng, C.; Li, W. A new natural α-helical peptide from the venom of the scorpion heterometrus petersii kills hcv. Peptides 2011, 32, 11–19. [Google Scholar] [CrossRef]
- Hong, W.; Li, T.; Song, Y.; Zhang, R.; Zeng, Z.; Han, S.; Zhang, X.; Wu, Y.; Li, W.; Cao, Z. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antivir. Res. 2014, 102, 1–10. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, R.; Di, Z.; He, Y.; Zhao, Z.; Hu, J.; Wu, Y.; Li, W.; Cao, Z. Design of histidine-rich peptides with enhanced bioavailability and inhibitory activity against hepatitis c virus. Biomaterials 2013, 34, 3511–3522. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, E.; Gurrola, G.B.; Schwartz, E.F.; Possani, L.D. Scorpion venom components as potential candidates for drug development. Toxicon 2015, 93, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, Z.; Zhou, D.; Chen, Y.; Hong, W.; Cao, L.; Yang, J.; Zhang, Y.; Shi, W.; Cao, Z. Virucidal activity of a scorpion venom peptide variant mucroporin-m1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides 2011, 32, 1518–1525. [Google Scholar] [CrossRef]
- Li, F.; Lang, Y.; Ji, Z.; Xia, Z.; Han, Y.; Cheng, Y.; Liu, G.; Sun, F.; Zhao, Y.; Gao, M. A scorpion venom peptide ev37 restricts viral late entry by alkalizing acidic organelles. J. Biol. Chem. 2019, 294, 182–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Zhang, R.; Hong, W.; Cheng, Y.; Wang, H.; Lang, Y.; Ji, Z.; Wu, Y.; Li, W.; Xie, Y. Histidine-rich modification of a scorpion-derived peptide improves bioavailability and inhibitory activity against HSV-1. Theranostics 2018, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from ranid frogs: Taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Et Biophys. Acta (BBA)-Proteins Proteom. 2004, 1696, 1–14. [Google Scholar] [CrossRef]
- Rollins-Smith, L.A.; Conlon, J.M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 2005, 29, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Delgado, O.; Silva, S.; Bravo, J.; Velasco, E.; Rojas de Astudillo, L.; De Sousa, L. Aislamiento y caracterización de un péptido del veneno de Tityus gonzalespongai (scorpiones, buthidae) con actividad sobre promastigotes de Leishmania (Leishmania) Mexicana. Saber 2013, 25, 399–413. [Google Scholar]
- Pedron, C.N.; Freire, K.A.; Torres, M.D.T.; Lima, D.B.; Monteiro, M.L.; Martins, A.M.C.; Oliveira, V.X. Arg-substituted VmCT1 analogs reveals promising candidate for the development of new antichagasic agent. Parasitology 2020, 147, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Amorim-Carmo, B.; Daniele-Silva, A.; Parente, A.M.; Furtado, A.A.; Carvalho, E.; Oliveira, J.W.; Santos, E.C.; Silva, M.S.; Silva, S.R.; Silva-Júnior, A.A. Potent and broad-spectrum antimicrobial activity of analogs from the scorpion peptide stigmurin. Int. J. Mol. Sci. 2019, 20, 623. [Google Scholar] [CrossRef]
- De Assis, D.R.R.; Pimentel, P.M.d.O.; Dos Reis, P.V.M.; Rabelo, R.A.N.; Vitor, R.W.A.; Cordeiro, M.d.N.; Felicori, L.F.; Olórtegui, C.D.C.; Resende, J.M.; Teixeira, M.M. Tityus serrulatus (scorpion): From the crude venom to the construction of synthetic peptides and their possible therapeutic application against toxoplasma gondii infection. Front. Cell. Infect. Microbiol. 2021, 11, 706618. [Google Scholar] [CrossRef]
- Flores-Solis, D.; Toledano, Y.; Rodríguez-Lima, O.; Cano-Sánchez, P.; Ramírez-Cordero, B.E.; Landa, A.; Rodriguez de la Vega, R.C.; del Rio-Portilla, F. Solution structure and antiparasitic activity of scorpine-like peptides from hoffmannihadrurus gertschi. FEBS Lett. 2016, 590, 2286–2296. [Google Scholar] [CrossRef]
- Lum, K.Y.; Tay, S.T.; Le, C.F.; Lee, V.S.; Sabri, N.H.; Velayuthan, R.D.; Hassan, H.; Sekaran, S.D. Activity of novel synthetic peptides against candida albicans. Sci. Rep. 2015, 5, 9657. [Google Scholar] [CrossRef] [Green Version]
- Chongsiriwatana, N.P.; Patch, J.A.; Czyzewski, A.M.; Dohm, M.T.; Ivankin, A.; Gidalevitz, D.; Zuckermann, R.N.; Barron, A.E. Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc. Natl. Acad. Sci. USA 2008, 105, 2794–2799. [Google Scholar] [CrossRef] [Green Version]
- Suhas, R. Structure, function and mechanistic aspects of scorpion venom peptides-a boon for the development of novel therapeutics. Eur. J. Med. Chem. Rep. 2022, 6, 100068. [Google Scholar] [CrossRef]
- Quintero-Hernández, V.; Jiménez-Vargas, J.; Gurrola, G.; Valdivia, H.; Possani, L. Scorpion venom components that affect ion-channels function. Toxicon 2013, 76, 328–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flórez, E. Escorpiones de la familia buthidae (chelicerata: Scorpiones) de colombia. Biota Colomb. 2001, 2. Available online: http://revistas.humboldt.org.co/index.php/biota/article/view/87 (accessed on 22 October 2022).
- Nabi, G.; Ahmad, N.; Ullah, S.; Khan, S. Therapeutic applications of scorpion venom in cancer: Mini review. J. Biol. Life Sci. 2015, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Desales-Salazar, E.; Khusro, A.; Cipriano-Salazar, M.; Barbabosa-Pliego, A.; Rivas-Caceres, R.R. Scorpion venoms and associated toxins as anticancer agents: Update on their application and mechanism of action. J. Appl. Toxicol. 2020, 40, 1310–1324. [Google Scholar] [CrossRef]
- Rincón-Cortés, C.A.; Reyes-Montaño, É.A.; Vega-Castro, N.A. Purificación parcial de péptidos presentes en el veneno del escorpión Tityus macrochirus (buthidae) y evaluación preliminar de su actividad citotóxica. Biomédica 2017, 37, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Rincón-Cortés, C.A.; Olamendi-Portugal, T.; Carcamo-Noriega, E.N.; Santillán, E.G.; Zuñiga, F.Z.; Reyes-Montaño, E.A.; Castro, N.A.V.; Possani, L.D. Structural and functional characterization of toxic peptides purified from the venom of the colombian scorpion Tityus macrochirus. Toxicon 2019, 169, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cantillo, J.; Navarro-García, F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investig. En Discapac. 2016, 5, 96–115. [Google Scholar]
- Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 2005, 30, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Boparai, J.K.; Sharma, P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett. 2020, 27, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.A.D.; Cuatetl, O.U.E.; Sánchez, E.A.R. El ocaso de los antibióticos. RD-ICUAP 2021, 7, 28–49. [Google Scholar]
Venom Species | Peptide ABPs | Aminoacids Residues | Molecular Weight (Da) | Antimicrobial Activity | Minimal Inhibitory Concentration (MIC) | Reference |
---|---|---|---|---|---|---|
Opithancatus Madagascariensis | IsCT1 and IsCT2 | 13 | 1504.2 and 1466.0 | S. aureus and E. coli | 50 μg/mL | [29] |
Mesobuthus martensii Karsch | BmKbpp | 47 | NR | Gram negative bacteria | 2.3 to 68.2 µM for different strains | [30] |
Mesobuthus eupeus | Meucin-49 | 49 | 5574.9 | Gram negative and Gram positive | 0.33 to 8.28 µM and 0.54 to 16.95 µM | [68] |
Heterometrus petersii | Hp1404 | 14 | 1545.9 | Acinetobacter baumannii | 3.2 µM | [31] |
Heterometrus spinifer | HsAp | 29 | NR | Gram positive and Gram negative bacteria | 11.8 to 46.5 µM and 23.8 to 51.2 µM | [49] |
Pandinus imperator | Pantinin 1,2 and 3 | 13–14 | NR | Gram positive and Gram negative bacteria | 4 to 48 µM and >87 to 36 µM | [48] |
Vaejovis punctatus | VpAmp1.0 and VpAmp2.0 | 19 and 25 | NR | Gram positive and Gram negative bacteria | 2.5 to 15 µM and 2.5 to 24 µM | [34] |
Scorpiops tibetanus | StCT2 | 14 | NR | Staphylococcus aureus | 6.25 µg/mL | [27] |
Tityus serrulatus | TsAP-2 | 17 | NR | Staphylococcus aureus | 5 µM | [46] |
Mesobuthus martensii | Marcin-18 | 18 | 2134.3 | Gram positive and Gram-negative bacteria | 1.5 to 23.4 µM and 5.9 to 11.27 µM | [69] |
Tityus stigmurus | Stigmurin | 17 | NR | S. aureus | 1 µg/mL | [70] |
Species Venom | Antifungal AFPs | Aminoacids Residues | Molecular Weight (Da) | Inhibited Fungal Species | Minimal Inhibitory Concentration (MIC) | Reference |
---|---|---|---|---|---|---|
Mesomexovis variegatu | VpCT1 | 13 | 1463.7 | C. albicans and C. glabrata | 25 µM and 12.5 µM | [34,52,82] |
Mesomexovis variegatu | VpCT2 | 13 | 1535.7 | C. albicans and C. glabrata | 25 µM | [34,52,82] |
Androctonus australis | Androctonin | 25 | 3076.7 | Aspergillus brassicola, Stemphylium, Fusiarum culmorum, Botritis cinérea | 2 a 50 µM | [83] |
Tityus stigmurus | Stigmurin | 22 | NR | C. albicans, C. krusei and C. glabatra | 34.75; 69.5 and 69.5 µM | [84] |
Tityus stigmurus | Hypotensin (TistH) | 25 | 2700 | C. albicans, C. tropicalis, A. flavus and Trichophyton rubrum. | [85] | |
Tityus stigmurus | Hypotensin (TistH) | 25 | 2700 | C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. krusei, C. dubliniensis, C. rugosa | >178.5 µg. mL−1 | [86] |
Parabuthus schlechteri | Parabutoporin | 45 | NR | Neurospora crassa, B. cinerea, F. culmorum, S. cervisiae | 2.5; 3.5; 0.3; 2 µM | [67] |
Opistophtalmus carinatus | Opistoporin 1 | 34 | NR | N. crassa, B. cinerea, F. culmorum, S. cervisiae | 0,8; 3.1; 0,8; 2 µM | [67] |
Tityus obscurus | ToAP2 | 26 | NR | C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. neoformans. | 12.5; 3.12; 50; 200; 12.5 µM | [87] |
Tityus obscurus | ToAP3 | 17 | NR | C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. neoformans. | 25; 12.5; 200; 200; 50 µM | [87] |
Tityus obscurus | ToAP1 | 17 | NR | C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. neoformans. | 50; 12.5; 200; >400; 25 µM | [87] |
Opisthacanthus cayaporum | Con10 | 27 | NR | C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. neoformans. | 100; 12.5; 200; 200; 50 µM | [87] |
O. cayaporum | NDBP-5.7 | 17 | NR | C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. neoformans. | 25; 25; >400; >400; 25 µM | [87] |
Species | AVPs | Amino Acid Residues | Molecular Weight (Da) | Inhibited Virus | Concentration Required to Reduce Virus Infection by 50% (EC50)/Activity | Reference |
---|---|---|---|---|---|---|
Heterometrus petersii, | Hp1090 | 13 | NR | HCV | 7.62 µg/mL, permeabilize the viral envelope and thus inactivate. | [91,105] |
H. petersii | Hp1036 and Hp1239 | 13 | NR | HSV-1 | 0.090 and 0.06 µM, respectively. Inhibit several steps of the replication cycle | [91,106] |
Chaerilus tryznai | Ctry2459 | 9 | NR | HCV | 1.84 µg/mL, inhibits the initial infection | [91,107,108] |
Lychas mucronatus | Mucroporin M-1 | 17 | SARS-CoV and H5N1 | 7.12 and 1.03 µM, respectively | [101,109] | |
Euscorpios validus | rEv37 | 18 | 8503.96 | HSV-1, DENV-2, HCV and ZIKV | Reduces infection at the post-entry cycles of infection. | [101,110] |
Euscorpios Validus | Eval418 | 13 | NR | HSV-1 | 2.48 µg/mL | [99,111] |
Species | APPs | Amino Acids Residues | Molecular Weight (Da) | Types of Parasites | The concentration Required to Reduce Grown of Parasite | Reference |
---|---|---|---|---|---|---|
T. stigmurus | StigA25 and StigA31 | Both 17 | NR | Epimastigote forms of T. cruzi | 12.5 μM and 25 μM respectively | [116] |
T. serrulatus | Pep 1 and Pep 2a | 11 and 10 | 1467 and 1509 | Toxoplasma gondii | 50 μg/mL | [117] |
Hoffmannihadrurus gertschi | rHge36 | 48 | NR | T. crassiceps | 67 nM | [118] |
P. imperator | scorpine | 75 | 8350 | Plasmodium | Inhibited the fecundation and ookinete, with concentration of 50 and 3 µM respectively. | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rincón-Cortés, C.A.; Bayona-Rojas, M.A.; Reyes-Montaño, E.A.; Vega-Castro, N.A. Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component. Toxins 2022, 14, 740. https://doi.org/10.3390/toxins14110740
Rincón-Cortés CA, Bayona-Rojas MA, Reyes-Montaño EA, Vega-Castro NA. Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component. Toxins. 2022; 14(11):740. https://doi.org/10.3390/toxins14110740
Chicago/Turabian StyleRincón-Cortés, Clara Andrea, Martín Alonso Bayona-Rojas, Edgar Antonio Reyes-Montaño, and Nohora Angélica Vega-Castro. 2022. "Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component" Toxins 14, no. 11: 740. https://doi.org/10.3390/toxins14110740