Phthalic Acid Esters: Natural Sources and Biological Activities
Abstract
:1. Introduction
2. Physicochemical Properties and Applications of PAEs
PAEs | Molecular Formula | Molecular Weight | CAS Registration Number | Specific Gravity (20 °C) | Water Solubility (mg/L) | log Kow | Melting Point (°C) | Application | References |
---|---|---|---|---|---|---|---|---|---|
Dimethyl phthalate | C10H10O4 | 194.18 | 131-11-3 | 1.19 | 4000 | 1.47 | 5.5 | Insect repellent, personal care products, etc. | [12] |
Diethyl phthalate | C12H14O4 | 222.24 | 84-66-2 | 1.12 | 1000 | 2.38 | –40 | Personal care products, plasticizers, cosmetics, etc. | [38] |
Di-n-butyl phthalate | C14H38O4 | 278.35 | 84-74-2 | 1.05 | 11.2 | 3.74 | –35 | PVC plastics, explosive materials, nail paints, etc. | [39] |
Butyl benzyl phthalate | C19H20O4 | 302.39 | 85-68-7 | 1.11 | 2.7 | 4.59 | –35 | Rapping materials, food conveyor belts, artificial letter, traffic cones, etc. | [40] |
Di(2-ethylhexyl) phthalate | C24H38O4 | 390.62 | 117-81-7 | 0.99 | 0.003 | 7.5 | –40 | Medical devices, food packaging, building products, children’s products, etc. | [41] |
Di-n-octyl phthalate | C24H38O4 | 390.62 | 117-84-0 | 0.99 | 0.0005 | 8.06 | –25 | Conveyor belts, pool liners, garden hoses, etc. | [22] |
3. Natural Existence of PAEs in Living Organisms
3.1. PAEs from Plant Sources
Family | Identified from | Origin | Type of PAEs | Relative Content of PAEs (%) * | References |
---|---|---|---|---|---|
Acanthaceae | Avicennia marina | Fruits | Diethyl phthalate | 1.2 | [70] |
Dimethyl phthalate | 0.6 | ||||
Methyl nonyl phthalate | 0.4 | ||||
Asystasia gangetica | Aerial Parts | Diisobutyl phthalate | 6.1 | [71] | |
Bis-Decyloctyl phthalate | 5.7 | ||||
Bis-Diundecyl phthalate | 5.7 | ||||
Bis-Decylhexyl phthalate | 4.2 | ||||
Bis-isodecylhexyl phthalate | 4.1 | ||||
Diheptyl phthalate | 3.6 | ||||
Bis-Didecyl phthalate | 2.6 | ||||
Bis-Heptyloctyl phthalate | 2.4 | ||||
Di-n-butyl phthalate | 2.3 | ||||
Di(2-ethylhexyl) phthalate | 1.5 | ||||
Bis-7-Methy loctyl phthalate | 1.0 | ||||
Araceae | Alocasia macrorrhiza | Whole Plants | Bis (2-isobutyl) phthalate | 32.5 | [55] |
Di-n-butyl phthalate | 14.4 | ||||
Asteraceae | Ageratina adenophora | Leaves, Shoots | Di(2-ethylhexyl) phthalate | N/A ** | [72] |
Di-n-butyl phthalate | |||||
Cirsium japonicum | Whole Plants | Di(2-ethylhexyl) phthalate | 30.8 | [57] | |
Diisooctyl phthalate | 16.6 | ||||
Mono (2-ethylhexyl) phthalate | 16.0 | ||||
Diisobutyl phthalate | 1.1 | ||||
Butyloctyl phthalate | 0.7 | ||||
Di-n-octyl phthalate | 0.1 | ||||
Chrysanthemum indicum | Leaves, Stems | Diethyl phthalate | N/A | [73] | |
Apiaceae | Angelica sinensis | Roots | Di-n-butyl phthalate | N/A | [74] |
Di(2-ethylhexyl) phthalate | |||||
Bis (2-methylpropyl) phthalate | |||||
Brassicaceae | Brassica oleracea | Stalks | Di-n-butyl phthalate | 32.0 | [42] |
Diisooctyl phthalate | 18.5 | ||||
Diisobutyl phthalate | 3.4 | ||||
Diethyl phthalate | 1.3 | ||||
Chenopodiaceae | Beta vulgaris | Root Exudates | Di-n-butyl phthalate | 47.2 | [75] |
Diisobutyl phthalate | 8.6 | ||||
Campanulaceae | Campanula colorata | Whole Plants | Butyloctyl phthalate | 10.2 | [76] |
Di-n-butyl phthalate | 7.4 | ||||
Diisooctyl phthalate | 0.6 | ||||
Calycanthaceae | Chimonanthus praecox | Flowers | Di-n-butyl phthalate | 4.5 | [77] |
Cladophoraceae | Cladophora fracta | Whole Plants | Diisobutyl phthalate | N/A | [67] |
Di-n-butyl phthalate | |||||
Chaetomorpha basiretorsa | Whole Plants | Di-n-butyl phthalate | N/A | [66] | |
Diisobutyl phthalate | |||||
Cyperaceae | Fimbristylis miliacea | Whole Plants | Di-n-octyl phthalate | N/A | [62] |
Crassulaceae | Hylotelephium erythrostictum | Flowers | Di-n-butyl phthalate | 1.2 | [78] |
Convolvulaceae | Ipomoea carnea | Whole Plants | Di-n-butyl phthalate | N/A | [79] |
Caryophyllaceae | Radix pseudostellariae | Whole Plants | Di-n-butyl phthalate | 87.2 | [52] |
Ditridecyl phthalate | 0.7 | ||||
Euphorbiaceae | Croton lachynocarpus | Roots | Di-n-butyl phthalate | N/A | [68] |
Diisobutyl phthalate | |||||
Butyl isobutyl phthalate | |||||
Jatropha curcas | Leaves | Di-n-octyl phthalate | 21.6 | [46] | |
Ericaceae | Pyrola rotundifolia | Whole Plants | Di-n-butyl phthalate | 40.5 | [53] |
Rhododendron calophytum | Flowers | Di-n-butyl phthalate | 4.9 | [80] | |
Diisobutyl phthalate | 1.4 | ||||
Fabaceae | Dalbergia odorifera | Flowers | Di-n-butyl phthalate | 14.0 | [81] |
Diisooctyl phthalate | 4.4 | ||||
Medicago sativa | Root Exudates | Di-n-butyl phthalate | 10.7 | [82] | |
Gracilariaceae | Gracilaria lemaneiformis | Whole Plants | Butyl isobutyl phthalate | N/A | [83] |
Gesneriaceae | Lysionotus pauciflorus | Whole Plants | Diisobutyl phthalate | 2.7 | [84] |
Hypericaceae | Hypericum scabrum | Seeds, Leaves | Di(2-ethylhexyl) phthalate | 5.8 | [85] |
Liliaceae | Allium fistulosum | Root Exudates | Diisooctyl phthalate | 11.4 | [86] |
Di-n-butyl phthalate | 4.7 | ||||
Diethyl phthalate | 3.2 | ||||
Dimethyl phthalate | 0.9 | ||||
Diisobutyl phthalate | 0.7 | ||||
Butyl methyl phthalate | 0.6 | ||||
Lilium brownii | Root Exudates | Diisooctyl phthalate | 52.1 | [63] | |
Di(2-ethylhexyl) phthalate | 41.0 | ||||
Methyl 2-ethylhexyl phthalate | 0.9 | ||||
2-ethyl hexyl butyl phthalate | 0.8 | ||||
Di-n-butyl phthalate | 0.3 | ||||
Paris polyphylla | Roots | Isobutyl-3-pentenyl phthalate | 24.7 | [87] | |
Butyl-2-isobutyl phthalate | 5.5 | ||||
Di(2-ethylhexyl) phthalate | 4.2 | ||||
Lamiaceae | Clerodendrum inerme | Leaves | Di-n-butyl phthalate | 59.3 | [56] |
Di(2-ethylhexyl) phthalate | 17.3 | ||||
Melissa officinalis | Aerial Parts | Diisobutyl phthalate | 2.5 | [88] | |
Di-n-butyl phthalate | 1.4 | ||||
Ocimum obovatum | Leaves | 2-ethylhexyl undecyl phthalate | 5.3 | [89] | |
Di-n-butyl phthalate | 4.5 | ||||
Phlomis umbrosa | Flowers | Diisobutyl phthalate | 13.4 | [90] | |
Di-n-butyl phthalate | 1.5 | ||||
Butyl isobutyl phthalate | 0.4 | ||||
Prunella vulgaris | Whole Plants | Di-n-octyl phthalate | 29.9 | [47] | |
Diethyl phthalate | 2.5 | ||||
Phlomis medicinalis | Roots | Butyl isobutyl phthalate | N/A | [91] | |
Scutellaria barbata | Whole Plants | Di-n-butyl phthalate | 8. 3 | [92] | |
Diisobutyl phthalate | 3. 6 | ||||
Malvaceae | Gossypium hirsutum | Stalks | Di-n-butyl phthalate | 7.9 | [45] |
Myricaceae | Myricarubra sieb | Fruits | Phthalic acid, hex-3-yl isobutyl ester | 9.7 | [93] |
Diisooctyl phthalate | 4.2 | ||||
Di-n-butyl phthalate | 2.0 | ||||
Dimethyl phthalate | 0.8 | ||||
Meliaceae | Toona ciliata | Leaves, Stems | Diisobutyl phthalate | N/A | [65] |
Di-n-butyl phthalate | |||||
Orchidaceae | Cymbidium sinense | Flowers | Diisobutyl phthalate | 12.5 | [94] |
Oleaceae | Osmanthus fragrans | Flowers | Mono (2-ethylhexyl) phthalate | 26.5 | [54] |
Bis (2-methylpropyl) phthalate | 21.9 | ||||
Di-n-butyl phthalate | 15.1 | ||||
Diethyl phthalate | 2.1 | ||||
Pontederiaceae | Eichhornia crassipes | Whole Plants | Di-n-octyl phthalate | N/A | [95] |
Diisooctyl phthalate | |||||
Mono (2-ethylhexyl) phthalate | |||||
Methyl dioctyl phthalate | |||||
Polygonaceae | Polygonum amplexicaule | Roots | Diisobutyl phthalate | N/A | [96] |
Poaceae | Zea mays | Straws | Di-n-butyl phthalate | 7.0 | [44] |
2-Methyl-pentyl-isobutyl phthalate dibutyl | 6.4 | ||||
Rosaceae | Malus prunifolia | Root Exudates | Phthalate derivates | 52.5 | [97] |
Pyrus bretschneideri | Seeds | Di-n-butyl phthalate | N/A | [69] | |
Diisobutyl phthalate | |||||
Pyrus ussriensis | Fruits | Di(2-ethylhexyl) phthalate | 29.4 | [58] | |
Photinia parvifolia | Fruits | Di-n-octyl phthalate | 10.1 | [48] | |
Rubiaceae | Paederia scandens | Whole Plants | Di-n-butyl phthalate | 5.0 | [98] |
Dimethyl phthalate | 3. 7 | ||||
Diisobutyl phthalate | 3.2 | ||||
Di-n-octyl phthalate | 2.9 | ||||
Ixora amplexicaulis | Branches, Leaves | Di-n-butyl phthalate | 15.0 | [43] | |
Rhamnaceae | Ziziphus mauritiana | Fruits | Di(2-ethylhexyl) phthalate | 18.0 | [59] |
Di-n-butyl phthalate | 12.3 | ||||
Solanaceae | Capsicum annuum | Leaves and Root Exudates | Di-n-butyl phthalate | 41.5 | [99] |
Butyl cyclohexane phthalate | 15.6 | ||||
Butyl isobutyl phthalate | 13.1 | ||||
Ditert butyl phthalate | 10.1 | ||||
Nicotiana tabacum | Root Exudates | 3-hexyl isobutyl phthalate | 4.8 | [100] | |
Diisobutyl phthalate | 2.9 | ||||
Solanum lycopersicum | Root Exudates | Di-n-butyl phthalate | 5.8 | [101] | |
Dimethyl phthalate | 2.1 | ||||
Diisooctyl phthalate | 1.7 | ||||
Diisobutyl phthalate | 0.4 | ||||
Solanum melongena | Root Exudates | Di-n-butyl phthalate | 13.6 | [64] | |
Diisobutyl phthalate | 1.9 | ||||
Diisononyl phthalate | 0.8 | ||||
Saxifragaceae | Saxifraga stolonfera | Whole Plants | Butyloctyl phthalate | 5.5 | [102] |
Sargassaceae | Nizamuddinia zanardinii | Whole Plants | Di-n-butyl phthalate | 5.1 | [103] |
Diethyl phthalate | 0.7 | ||||
Sapindaceae | Nephelium lappaceum | Peels | Isobutyl octyl phthalate | 16.5 | [104] |
Diisooctyl phthalate | 8.9 | ||||
Salviniaceae | Salvinia natans | Whole Plants | Mono (2-ethylhexyl) phthalate | 29.3 | [105] |
Di-n-butyl phthalate | 1.0 | ||||
Thymelaeaceae | Stellera chamaejasme | Root Exudates | 2-Ethyl hexyl phthalate | 18.7 | [106] |
Di-n-butyl phthalate | 4.6 | ||||
Diisobutyl phthalate | 0.2 |
3.2. PAEs Identified and Purified from Microorganisms
4. Biological Activities of PAEs
4.1. Allelopathic/Phytotoxic Activity
4.2. Antimicrobial Activity
4.3. Insecticidal Activity
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeddi, M.Z.; Janani, L.; Memari, A.H.; Akhondzadeh, S.; Yunesian, M. The role of phthalate esters in autism development: A systematic review. Environ. Res. 2016, 151, 493–504. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.; He, W.; Xu, F. The occurrence, composition and partitioning of phthalate esters (PAEs) in the water-suspended particulate matter (SPM) system of Lake Chaohu, China. Sci. Total Environ. 2019, 661, 285–293. [Google Scholar] [CrossRef]
- Chi, Z.; Zhao, J.; Li, W.; Araghi, A.; Tan, S. In vitro assessment of phthalate acid esters-trypsin complex formation. Chemosphere 2017, 185, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, H.; Liu, H.; Wang, F.; Ma, S.; Latipa, A.; Wang, S.; Wang, C. Analysis of phthalate esters in dairy products-a brief review. Anal. Methods 2017, 9, 370–380. [Google Scholar] [CrossRef]
- Sardon, H.; Dove, A.P. Plastics recycling with a difference. Science 2018, 360, 380–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Themelis, N.J.; Sun, K.; Bourtsalas, A.C.; Huang, Q.; Zhang, Y.; Wu, Z. Current influence of China’s ban on plastic waste imports. Waste Dispos. Sustain. Energy 2019, 1, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.W.; Wen, Z.D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 2016, 541, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Gani, K.M.; Tyagi, V.K.; Kazmi, A.A. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: A review. Environ. Sci. Pollut. Res. 2017, 24, 17267–17284. [Google Scholar] [CrossRef]
- Miodovnik, A.; Edwards, A.; Bellinger, D.C.; Hauser, R. Developmental neurotoxicity of ortho-phthalate diesters: Review of human and experimental evidence. Neurotoxicology 2014, 41, 112–122. [Google Scholar] [CrossRef]
- Howdeshell, K.L.; Wilson, V.S.; Furr, J.; Lambright, C.R.; Rider, C.V.; Blystone, C.R.; Hotchkiss, A.K.; Gray, L.E., Jr. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner. Toxicol. Sci. 2008, 105, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, G.; Wang, L. Potential Toxicity of Phthalic Acid Esters Plasticizer: Interaction of Dimethyl Phthalate with Trypsin in Vitro. J. Agric. Food Chem. 2015, 63, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shao, X.; Zhang, Z.; Zou, Y.; Chen, Y.; Han, S.; Wang, S.; Wu, X.; Yang, L.; Chen, Z. Effects of di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish. Bull. Environ. Contam. Toxicol. 2013, 91, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shao, X.; Zhang, Z.; Zou, Y.; Wu, X.; Yang, L. Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxicol. Environ. Saf. 2013, 93, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, Y.; Qi, M. Toxicity of phthalate esters exposure to carp (Cyprinus carpio) and antioxidant response by biomarker. Ecotoxicology 2014, 23, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Schmid, H.; Karrer, P. The Water−Soluble Constituents of Papaver Somniferum L. Helv. Chim. Acta 1945, 28, 722–740. [Google Scholar] [CrossRef]
- Roy, R.N. Bioactive natural derivatives of phthalate ester. Crit. Rev. Biotechnol. 2020, 40, 913–929. [Google Scholar] [CrossRef]
- Mathur, S.P. Phthalate esters in the environment: Pollutants or natural products? J. Environ. Qual. 1974, 3, 189–197. [Google Scholar] [CrossRef]
- Gomez-Hens, A.; Aguilar-Caballos, M.P. Social and economic interest in the control of phthalic acid esters. TrAC Trends Anal. Chem. 2003, 22, 847–857. [Google Scholar] [CrossRef]
- Net, S.; Sempere, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef]
- Autian, J. Toxicity and health threats of phthalate esters: Review of the literature. Environ. Health Perspect. 1973, 4, 3–26. [Google Scholar] [CrossRef]
- Das, M.T.; Kumar, S.S.; Ghosh, P.; Shah, G.; Malyan, S.K.; Bajar, S.; Thakur, I.S.; Singh, L. Remediation strategies for mitigation of phthalate pollution: Challenges and future perspectives. J. Hazard. Mater. 2020, 124496. [Google Scholar] [CrossRef]
- Hu, A.P.; Liu, Y.L.; Shi, L.K. Widespread occurrence of phthalic acid esters in raw oilseeds in China used for edible vegetable oil production. Food Addit. Contam. Part A 2016, 33, 1421–1427. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical review on the presence of phthalates in food and evidence of their biological impact. Int. J. Environ. Res. Public Health. 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Alnaimat, A.S.; Barciela-Alonso, M.C.; Bermejo-Barrera, P. Development of a sensitive method for the analysis of four phthalates in tea samples: Tea bag contribution to the total amount in tea infusion. Food Addit. Contam. Part A 2020, 37, 1719–1729. [Google Scholar] [CrossRef]
- Martínez, M.; Rovira, J.; Sharma, R.P.; Nadal, M.; Schuhmacher, M.; Kumar, V. Comparing dietary and non-dietary source contribution of BPA and DEHP to prenatal exposure: A Catalonia (Spain) case study. Environ. Res. 2018, 166, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Mao, W.; Shen, Y.; Feng, W.; Mao, G.; Zhao, T.; Yang, L.; Yang, L.; Meng, C.; Li, Y.; et al. Distribution, source, and environmental risk assessment of phthalate esters (PAEs) in water, suspended particulate matter, and sediment of a typical Yangtze River Delta City, China. Environ. Sci. Pollut. Res. 2019, 26, 24609–24619. [Google Scholar] [CrossRef]
- Sha, Y.; Xia, X.; Yang, Z.; Huang, G.H. Distribution of PAEs in the middle and lower reaches of the Yellow River, China. Environ. Monit. Assess. 2007, 124, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, C.; Yu, Y.; Liu, H.; Shen, Y. Distribution characteristics and health risk assessment of PAEs in urban soils of Changji City, Xinjiang, China. Chin. J. Nat. 2020, 22, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liang, H.; Gao, D.W. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China. Environ. Sci. Pollut. Res. 2017, 24, 19723–19732. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.; He, W.; Xu, F. Phthalate esters (PAEs) in atmospheric particles around a large shallow natural lake (Lake Chaohu, China). Sci. Total Environ. 2019, 687, 297–308. [Google Scholar] [CrossRef]
- Wang, P.; Wang, S.L.; Fan, C.Q. Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere 2008, 72, 1567–1572. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, H.; Ji, Z.; Li, D.; Kaw, H.Y.; Chen, J.; Xie, Z.; Zhang, T. PAES and PAHs in the surface sediments of the East China Sea: Occurrence, distribution and influence factors. Sci. Total Environ. 2020, 703, 134763. [Google Scholar] [CrossRef] [PubMed]
- Arfaeinia, H.; Fazlzadeh, M.; Taghizadeh, F.; Saeedi, R.; Spitz, J.; Dobaradaran, S. Phthalate acid esters (PAEs) accumulation in coastal sediments from regions with different land use configuration along the Persian Gulf. Ecotoxicol. Environ. Saf. 2019, 169, 496–506. [Google Scholar] [CrossRef]
- Bu, S.B.; Wang, Y.L.; Wang, H.Y.; Wang, F.; Tan, Y.F. Analysis of global commonly-used phthalates and non-dietary exposure assessment in indoor environment. Build. Environ. 2020, 177, 106853. [Google Scholar] [CrossRef]
- Hu, H.; Fang, S.; Zhao, M.; Jin, H. Occurrence of phthalic acid esters in sediment samples from East China Sea. Sci. Total Environ. 2020, 722, 137997. [Google Scholar] [CrossRef]
- Keire, D.A.; Anton, P.; Faull, K.F.; Ruth, E.; Walsh, J.H.; Chew, P.; Quisimoro, D.; Territo, M.; Reeve, J.R. Diethyl phthalate, a chemotactic factor secreted by Helicobacter pylori. J. Biol. Chem. 2001, 276, 48847–48853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.M.; Wu, M.; Yao, Y.; Zheng, X.; Zhao, J.; Wang, Z.Y.; Xing, B.S. Inhibitory effects and oxidative target site of dibutyl phthalate on Karenia brevis. Chemosphere 2015, 132, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Daiem, M.M.A.; Rivera-Utrilla, J.; Ocampo-Perez, R.; Mendez-Diaz, J.D.; Sanchez-Polo, M. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies—A review. J. Environ. Manag. 2012, 109, 164–178. [Google Scholar] [CrossRef]
- Martinez-Razo, L.D.; Martinez-Ibarra, A.; Vazquez-Martinez, E.R.; Cerbon, M. The impact of Di-(2-ethylhexyl) Phthalate and Mono(2-ethylhexyl) Phthalate in placental development, function, and pathophysiology. Environ. Int. 2021, 146, 106228. [Google Scholar] [CrossRef]
- Zhang, X.P.; Ning, T.Y.; Zhang, J.Y.; Yang, Y.; Sun, T.; Han, H.F.; Li, Z.J. Allelopathy of Decomposed Exudates from Broccoli Stalk on Seedlings Growth of Different Vegetables. J. Shandong Agric. Univ. Nat. Sci. Ed. 2016, 47, 481–486. [Google Scholar]
- Chen, L.; Yue, Y.; Jiang, C.; Jiang, J.; Chen, Z.; Chen, Y. GC-MS analysis of liposoluble constituents from Iroxa amplexicaulis. China J. Tradit. Chin. Med. Pharm. 2011, 26, 3003–3005. [Google Scholar]
- Qi, Y.Z.; Zhen, W.C.; Li, H.Y. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS. J. Integr. Agric. 2015, 14, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.B.; Zhang, Q.; Wan, C.X.; Gong, M.F.; Zhang, L.L. Allelopathy and chemical constituents of decomposing products from cotton stalk. Cotton Sci. 2009, 21, 497–502. [Google Scholar]
- Tian, Q.; Liang, Z.; Chen, Y.; Wang, J.; Deng, S. Analysis of Petroleum Ether Extract from Jatropha curcas Leaves by GC-MS. Lishizhen Med. Mater. Med. Res. 2011, 22, 2117–2118. [Google Scholar]
- Zhao, X.; Lou, Y.; Su, F.; Zhou, C.; Zhang, Y. Study on the components with hypotensive activities from petroleum ether part of compound Prunella vulgaris L. Chin. J. Hosp. Pharm. 2014, 34, 1–4. [Google Scholar] [CrossRef]
- Cheng, Z.; Yi, X.; Tan, D.; Lou, X.; Yang, D. GC-MS analysis of the low-and-middle polarity components from the fruit of Photinia parvifolia. Guihaia 2013, 33, 568–570. [Google Scholar]
- Rubiolo, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicchi, C. Essential oils and volatiles: Sample preparation and analysis. A review. Flavour Fragr. J. 2010, 25, 282–290. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Wu, J.; Chen, T.; Qin, L. Chemical Constituents of the Essential Oil from Radix Pseudostellariae (I). Nat. Prod. Res. Dev. 2008, 20, 458–460, 487. [Google Scholar] [CrossRef]
- Kirillov, V.; Stikhareva, T.; Atazhanova, G.; Serafimovich, M.; Mukanov, B.; Adekenov, S.; Mukasheva, F.; Yrymgali, M. Chemical Composition of the Essential Oil of the Boreal Relict of Pyrola rotundifolia L. from Northern Kazakhstan. J. Oleo Sci. 2015, 64, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.M.; Lu, J.S. A study on chemical composition of the essential oils from Osmanthus fragrant flowers. Anal. Lab. 2007, 26, 37–41. [Google Scholar]
- Gan, Y.; Liu, G. Study on the essential chemical component of giant taro, Alocasia macrorrhiza (L.) Schott. Guangdong Agric. Sci. 2012, 39, 38–39. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z.; Liang, Z.; Yang, X.; Xu, J. Comparative evaluation of the chemical composition of essential oil from twig, leaf and root of Clerodendrum inerme (L.) Gaertn. Adv. Mater. Res. 2012, 343, 22–27. [Google Scholar] [CrossRef]
- Luo, X.; Yang, Z.R. Studies on chemical components and antibacterial activity of essential oil from Cirsium japonicum DC. J. Sichuan Univ. Nat. Sci. Ed. 2009, 46, 1531–1536. [Google Scholar]
- Xin, Y.; Liu, C.; Hou, D.; Li, T. Analysis of the Chemical Constituents of Essential Oil of Flesh from Nanguoli Pear. Food Sci. 2004, 25, 223–225. [Google Scholar]
- Deng, G.; Li, X.; Lin, Y.; Han, X.; Zhang, X. Study of the Volatile Components of the Fruit of Ziziphus mauritiana Lam.by GC-MS. Fine Chem. 2004, 21, 318–320. [Google Scholar]
- Bertin, C.; Yang, X.H.; Weston, L.A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front. Plant. Sci. 2019, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Ismail, B.S.; Siddique, A.B. Identification of allelochemicals from Fimbristylis miliacea and their allelopathic potential against weed species. Allelopath. J. 2012, 30, 311–318. [Google Scholar]
- Cheng, Z.; Xu, P. GC-MS identification of chemicals in lily root exudates. J. Northwest A F. Univ. Nat. Sci. Ed. 2012, 40, 202–208. [Google Scholar] [CrossRef]
- Zhou, B.L.; Yin, Y.L.; Zhang, F.L.; Ye, X.L. Allelopathic effects of root exudates of grafted eggplants on Verticillium dahliae and their constituents’ identification. Allelopath. J. 2010, 25, 393–402. [Google Scholar]
- Liu, Y.B.; Cheng, X.R.; Qin, J.J.; Yan, S.K.; Jin, H.Z.; Zhang, W.D. Chemical constituents of Toona ciliata var. pubescens. Chin. J. Nat. Med. 2011, 9, 115–119. [Google Scholar] [CrossRef]
- Shi, D.; Han, L.; Sun, J.; Wang, Y.; Yang, Y.; Shi, J.; Fan, X. Chemical constituents from marine alga Chaetomorpha basiretorsa. China J. Chin. Mater. Med. 2005, 30, 347–350. [Google Scholar]
- Dong, S.J.; Bi, X.D.; Wang, N.; Song, L.; Dai, W.; Zhang, S.L. Algicidal activities of Cladophora fracta on red tide-forming microalgae Heterosigma akashiwo and Gymnodinium breve. Allelopath. J. 2016, 37, 231–240. [Google Scholar]
- Pan, Z.; Wu, Y.; Ning, D.; Wei, Y. Chemical constituents from the root of Croton lachynocarpus. Guihaia 2014, 34, 148–150, 255. [Google Scholar]
- Li, X.; Zhang, J.; Gao, W.; Wang, H. Study on chemical composition, anti-inflammatory and anti-microbial activities of extracts from Chinese pear fruit (Pyrus bretschneideri Rehd.). Food Chem. Toxicol. 2012, 50, 3673–3679. [Google Scholar] [CrossRef]
- Huang, L.S.; Zhu, F.; Huang, M.Z. GC/MS Analysis of the Chemical Constituents of the Essential Oil from the Fruits of Avicennia Marina. Fine Chem. 2009, 26, 255–257. [Google Scholar]
- Olufunke, M.D. Essential Oils from Aerial, Seed and Root of Nigerian Asystasia gangetica (L). J. Essent. Oil-Bear. Plants. 2011, 14, 582–589. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Guo, J.; Shao, H.; Yang, G.Q. Effects of allelochemicals from Ageratina adenophora (Spreng.) on its own autotoxicity. Allelopath. J. 2014, 34, 253–264. [Google Scholar]
- Jiang, P.; Zheng, D.F.; Tian, W.; Du, N.N.; Zhang, X.; Zhang, A.L. Identification of allelochemicals in Chrysanthemum indicum L. and their fungicidal potential against Sclerotium rolfsii Sacc. and Atractylodes macrocephala Koidz. Allelopath. J. 2016, 37, 137–145. [Google Scholar]
- Ma, J.P.; Guo, Z.B.; Jin, L.; Li, Y.D. Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chin. J. Nat. Med. 2015, 13, 241–249. [Google Scholar] [CrossRef]
- Li, C.; Chen, M.; Ma, F.; Gai, Z.; Guo, J.; Wang, Y. Study on allelopathy of sugar beet root exudates on soybean. J. Northeast Agric. Univ. 2016, 47, 21–30. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, M.; Xiang, C.; Li, B. Analysis on chemical constituents in essential oil from Campanula colorata. J. Plant Resour. Environ. 2014, 23, 99–101. [Google Scholar]
- Si, H.Q.; Shen, Q.; Pang, X.L. Supercritical Fluid Carbon Dioxide Extraction and GC-MS Analysis of Essential Oil from Chimonanthus praecox Flowers. Food Sci. 2010, 31, 134–137. [Google Scholar]
- Wang, Y.; Tang, Z.; Cao, M.; Li, Y.; Zhang, T.; Du, H. Allelopathic effects of Hylotelephium erythrostictum flowers on three weed species and identification of potential allelochemicals. Acta Pratacult. Sin. 2020, 29, 175–182. [Google Scholar]
- Adsul, V.B.; Khatiwora, E.; Torane, R.C.; Deshpande, N.R. Isolation and characterization of dibutyl phthalate from leaves of Ipomoea carnea. Chem. Nat. Compd. 2012, 48, 712–713. [Google Scholar] [CrossRef]
- Tian, P.; Fu, X.; Zhuang, P.; Bai, J.; Chen, F. Analysis on Volatile Oil from Rhododendron calophytum Franch by GC-MS. Chin. J. Appl. Environ. Biol. 2010, 16, 734–737. [Google Scholar]
- Chen, L.X.; Liu, S.H.; Chen, X.; Peng, L.X. Chemical Composition and Antibacterial Activity of the Essential Oils from Dalbergia odorifera T.Chen. Chin. J. Trop. Crops. 2011, 32, 1165–1167. [Google Scholar]
- Zhao, R.; Cai, L. The Determination of Root Exudates of Medicago sativa and the Study on Allelopathic Effect of Typical Exudation 3,5-di-tert-Butyl-4-hydroxybenzaldehyde. Chin. Agri. Sci. Bull. 2013, 29, 34–41. [Google Scholar]
- Lu, H.; Xie, H.; Yang, Y.; Wei, X. Chemical Constituents from the Macroalga Gracilaria lemaneiformis. J. Trop. Subtrop. Bot. 2011, 19, 166–170. [Google Scholar]
- Li, J.L.; Liu, J.H.; Gao, Y.Q.; Huo, X.; Wang, D.P.; Sheng, S.C. Study on Chemical Constituents of Volatile Oil from Lysionotus pauciflorus. Chin. Pharm. 2011, 22, 2560–2562. [Google Scholar]
- Shafaghat, A. Omega-3 content, antimicrobial and antioxidant activities of hexanic extract from seed and leaf of Hypericum scabrum from northwestern Iran. Afr. J. Microbiol. Res. 2012, 6, 904–908. [Google Scholar] [CrossRef]
- Xu, N.; Wang, C.; Wei, M.; Shi, W.; Wang, X. Allelopathy of Welsh Onion Root Exudates on Cucumber Seed Germination and Fusarium oxysporum f. sp. cucumerinum and the GC-MS Analysis. Acta Hortic. Sin. 2012, 39, 1511–1520. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Tian, Q. Analysis of Chemical Components of Volatile Oil from Paris polyphylla and Their Antibacterial Activities. J. Chin. Med. Mater. 2014, 37, 612–616. [Google Scholar] [CrossRef]
- Efremov, A.A.; Zykova, I.D.; Gorbachev, A.E. Composition of the essential oil from the lemon balm growing in the neighborhood of Krasnoyarsk as indicated by gas chromatography-mass spectrometry data. Russ. J. Bioorg. Chem. 2016, 42, 726–729. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, Y.; Sadashiva, C.T.; Kasim, N.; Nicholas, A.; Naidoo, G. Chemical Composition and Antimicrobial Activity of the Essential Oil of Ocimum obovatum E. Mey. Ex Benth. (Lamiaceae). J. Essent. Oil-Bear. Plants. 2014, 17, 142–147. [Google Scholar] [CrossRef]
- Tian, G.H.; Liu, C.F.; Wei, C.; Lai, P.H. Study on component analysis and antimicrobial activity of the essential oil of the flower of Phlomis umbrosa. Chin. J. Pharm. Anal. 2009, 29, 390–394. [Google Scholar]
- Yu, Z.X.; Wang, G.L.; Dai, Z.; Bianba, C.R.; Lin, R. Studies on Chemical Constituents ef Phlomis medicinalis II. Chin. Pharm. J. 2007, 42, 1295–1298. [Google Scholar]
- Cao, Y.; Zhang, D.; Yang, L.; Xue, P.; Yang, L.; Zhang, K.; Liang, C. Analysis of the Volatile Compounds in Scutellaria barbata Using HS-SPME-GC-MS. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 40–43. [Google Scholar] [CrossRef]
- Liu, T.; Jin, J.; Jin, J.; Peng, Z.; Luo, F. Volatile Constituents from Myricarubra cv. DingAo Orient Pearl and Its Antitumor Activity. Nat. Prod. Res. Dev. 2014, 26, 1839–1842. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Zhang, J.; Zhu, G. Composition Analysis on Flower Essential Oils of Cymbidium sinense ‘Qi Hei’. Chin. J. Trop. Crops. 2016, 37, 86–91. [Google Scholar]
- Shanab, S.M.; Shalaby, E.A.; Lightfoot, D.A.; El-Shemy, H.A. Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS ONE 2010, 5, e13200. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Hu, Y.; Yan, Y. Study on Chemical Composition of Ethylacetate Fraction from Polygonum amplexicaule var.sinense. J. Chin. Med. Mater. 2012, 35, 1610–1614. [Google Scholar] [CrossRef]
- Bai, R.; Zhao, X.; Ma, F.; Li, C. Identification and bioassay of allelopathic substances from the root exudates of Malus prunifolia. Allelopath. J. 2009, 23, 477–484. [Google Scholar]
- Zhang, W.; Yin, Z.H. Analysis of Volatile Constituents in Paederia scandens by HS-SPME-GC/MS. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 55–57. [Google Scholar] [CrossRef]
- Geng, G.D.; Zhang, S.Q.; Cheng, Z.H. Allelopathy and Allelochemicals of Root Exudates in Hot Pepper. Acta Hortic. Sin. 2009, 36, 873–878. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, S.; Zhang, F.; Zhang, Y.; Hu, F.; Li, H. Autotoxins exuded from roots and the effects of PAEs on antioxidant capacity in roots of tobacco seedlings. Acta Ecol. Sin. 2017, 37, 495–504. [Google Scholar]
- Yang, G.; Zhou, B.; Zhang, X.; Zhang, Z.; Wu, Y.; Zhang, Y.; Lu, S.; Zou, Q.; Gao, Y.; Teng, L. Effects of Tomato Root Exudates on Meloidogyne incognita. PLoS ONE 2016, 11, e0154675. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. Chemical Constituents and Antibacterial Activity of Essential Oil from Saxifraga stolonifera. Acta Agric. Boreali-Occident. Sin. 2016, 25, 1536–1540. [Google Scholar]
- Firouzi, J.; Gohari, A.R.; Rustaiyan, A.; Larijani, K.; Saeidnia, S. Composition of the Essential oil of Nizamuddinia zanardinii, a Brown Alga Collected from Oman Gulf. J. Essent. Oil Bear. Plants. 2013, 16, 689–692. [Google Scholar] [CrossRef]
- Monrroy, M.; Arauz, O.; Garcia, J.R. Active Compound Identification in Extracts of N. lappaceum Peel and Evaluation of Antioxidant Capacity. J. Chem. 2020, 2020, 4301891. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xia, W.; Yang, X.; Zhang, T. Inhibition effect on Microcystis aeruginosa PCC7806 as well as separation and identification of algicidal substances isolated from Salvinia natans (L.) All. J. Hyg. Res. 2016, 45, 442–447. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, X.; Yang, Y.; Li, S.; Wang, H.; Wang, Y.; Zhang, S. Chemical Components and Antitumor Activity of Root Extract of Stellera chamaejasme L. Nat. Prod. Res. Dev. 2018, 30, 621–628. [Google Scholar] [CrossRef]
- Aboobaker, Z.; Viljoen, A.; Chen, W.; Crous, P.W.; Maharaj, V.J.; Van, V.S. Endophytic fungi isolated from Pelargonium sidoides DC: Antimicrobial interaction and isolation of a bioactive compound. S. Afr. J. Bot. 2019, 122, 535–542. [Google Scholar] [CrossRef]
- Rajamanikyam, M.; Vadlapudi, V.; Parvathaneni, S.P.; Koude, D.; Sripadi, P.; Misra, S.; Amanchy, R.; Upadhyayula, S.M. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J. 2017, 16, 375–387. [Google Scholar] [CrossRef]
- Lee, D.S. Dibutyl phthalate, an alpha-glucosidase inhibitor from Streptomyces melanosporofaciens. J. Biosci. Bioeng. 2000, 89, 271–273. [Google Scholar] [CrossRef]
- Al-Bari, M.A.A.; Bhuiyan, M.S.A.; Flores, M.E.; Petrosyan, P.; Garcia-Varela, M.; Ul Islam, M.A. Streptomyces bangladeshensis sp nov., isolated from soil, which produces bis-(2-ethylhexyl)phthalate. Int. J. Syst. Evol. Microbiol. 2005, 55, 1973–1977. [Google Scholar] [CrossRef] [Green Version]
- Amade, P.; Mallea, M.; Bouaicha, N. Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsonii Bainier and Sartory. J. Antibiot. 1994, 47, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, R.N.; Laskar, S.; Sen, S.K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol. Res. 2006, 161, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Callaway, R.M.; Aschehoug, E.T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 2000, 290, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Huang, X.; Wei, X.; Zhang, C. Phytotoxic effects and a phytotoxin from the invasive plant Xanthium italicum Moretti. Molecules 2012, 17, 4037–4046. [Google Scholar] [CrossRef] [Green Version]
- Xuan, T.D.; Chung, I.M.; Khanh, T.D.; Tawata, S. Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crusgalli) root exudates. J. Chem. Ecol. 2006, 32, 895–906. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Jiang, P.; Zhang, X.; Zhang, X.; Tan, P.; Tian, W. Identification of chrysanthemum root exudates and allelopathic effects of the three plants. Hubei Agric. Sci 2017, 56, 1061–1071. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, Y.; Hu, J.; Jiao, J.; Hu, F.; Li, H.; Zhang, S. Autotoxicity of Phthalate Esters in Tobacco Root Exudates: Effects on Seed Germination and Seedling Growth. Pedosphere 2017, 27, 1073–1082. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Habib, M.R.; Karim, M.R. Antimicrobial and Cytotoxic Activity of Di-(2-ethylhexyl) Phthalate and Anhydrosophoradiol-3-acetate Isolated from Calotropis gigantea (Linn.) Flower. Mycobiology 2009, 37, 31–36. [Google Scholar] [CrossRef] [Green Version]
- El-Mehalawy, A.; Gebreel, H.; Rifaat, H.; El-Kholy, I.; Humid, A. Effect of antifungal compounds produced by certain bacteria on physiological activities of human and plant pathogenic fungi. J. Appl. Sci. Res. 2008, 4, 425–432. [Google Scholar]
- Li, X.; Jing, T.; Zhou, D.; Zhang, M.; Qi, D.; Zang, X.; Zhao, Y.; Li, K.; Tang, W.; Chen, Y.; et al. Biocontrol efficacy and possible mechanism of Streptomyces sp. H4 against postharvest anthracnose caused by Colletotrichum fragariae on strawberry fruit. Postharvest Biol. Technol. 2021, 175, 111401. [Google Scholar] [CrossRef]
- Qi, G.; Liu, H.; Li, Z.; Long, L.; Wang, M. Active constituents of garlic bulb extract and its inhibition on Colletotrichum gloeosporioides. J. Henan Agri. Uni. 2020, 54, 59–63. [Google Scholar]
- Zhang, Z.; Ao, W.; Xiong, Y.; Yan, R.; Wang, Y.; Zhu, D. Identification of antagonistic endophytic actinomycete FRo2 and isolation of its antimicrobial composition. Microbiology China. 2014, 41, 1574–1581. [Google Scholar] [CrossRef]
- Liang, C.; Chen, Y.; Li, C.; Song, X.; Xie, C.; Zhu, C.; Sun, R. Antifungal activity of extracts of Helicteres ngustifolia against ten plant pathogenic fungi. Guihaia 2020, 40, 715–726. [Google Scholar]
- Janu, N.P.; Jaynthy, C. Antimicrobial activity of diethyl phthalate: An insilico approach. Asian J. Pharm. Clin. Res. 2014, 7, 141–142. [Google Scholar]
- Gayatri, K.V.; Soundhari, C.; Pavithra, B.P. Biofilm inhibitory effect of Chlorella extracts on Pseudomonas aeruginosa. Int. J. Pharm. Sci. Res. 2019, 10, 1966–1971. [Google Scholar] [CrossRef]
- Rashiya, N.; Padmini, N.; Ajilda, A.A.K.; Prabakaran, P.; Durgadevi, R.; Ravi, A.V.; Ghosh, S.; Sivakumar, N.; Selvakumar, G. Inhibition of biofilm formation and quorum sensing mediated virulence in Pseudomonas aeruginosa by marine sponge symbiont Brevibacterium casei strain Alu 1. Microb. Pathog. 2021, 150, 104693. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; You, Y.; Xu, W.; Lv, Z.; Liu, Z.; Chen, W.; Shi, Y.; Wang, J. Response of Pseudomonas fluorescens to dimethyl phthalate. Ecotoxicol. Environ. Saf. 2019, 167, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; He, X.Q. Natural products-based insecticidal agents 6. Design, semisynthesis, and insecticidal activity of novel monomethyl phthalate derivatives of podophyllotoxin against Mythimna separata Walker in vivo. Bioorg. Med. Chem. Lett. 2010, 20, 4503–4506. [Google Scholar] [CrossRef]
- Brown, M.; Hebert, A.A. Insect repellents: An overview. J. Am. Acad. Dermatol. 1997, 36, 243–249. [Google Scholar] [CrossRef]
- Guo, Y.; Kannan, K. Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal. Bioanal. Chem. 2012, 404, 2539–2554. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Kannan, K. Phthalates and parabens in personal care products from China: Concentrations and human exposure. Arch. Environ. Contam. Toxicol. 2014, 66, 113–119. [Google Scholar] [CrossRef]
- He, M.; Yang, C.; Geng, R.J.; Zhao, X.G.; Hong, L.; Piao, X.F.; Chen, T.; Quinto, M.; Li, D.H. Monitoring of phthalates in foodstuffs using gas purge microsyringe extraction coupled with GC–MS. Anal. Chim. Acta 2015, 879, 63–68. [Google Scholar] [CrossRef]
- Chen, C.Y. Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga-Bangia atropurpurea. Water Res. 2004, 38, 1014–1018. [Google Scholar] [CrossRef]
- Namikoshi, M.; Fujiwara, T.; Nishikawa, T.; Ukai, K. Natural abundance 14C content of dibutyl phthalate (DBP) from three marine algae. Mar. Drugs 2006, 4, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Ni, J.; Chang, F.; Liu, S.; Xu, N.; Sun, W.; Xie, Y.; Guo, Y.; Ma, Y.; Yang, Z.; et al. Bio-Source of di-n-butyl phthalate production by filamentous fungi. Sci. Rep. 2016, 6, 19791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatiwora, E.; Adsul, V.B.; Pawar, P.; Joseph, M.; Deshpande, N.R.; Kashalkar, R.V. Larvicidal activity of Ipomoea carnea stem extracts and its active ingredient dibutyl phthalate against Aedes aegypti and Culex quinquefasciatus. Pharma Chem. 2014, 6, 155–161. [Google Scholar]
- Babu, B.; Wu, J.T. Production of phthalate esters by nuisance freshwater algae and cyanobacteria. Sci. Total Environ. 2010, 408, 4969–4975. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, Y. Potential allelopathic effects of allelochemicals in aqueous extracts of leaves and root exudates of Capsicum annuum on vegetable crops. Allelopath. J. 2015, 35, 11–22. [Google Scholar]
- Ludwig, M.J. Plants and endophytes: Equal partners in secondary metabolite production? Biotechnol. Lett. 2015, 37, 1325–1334. [Google Scholar] [CrossRef]
Category | Family | Species | Type of PAEs | References |
---|---|---|---|---|
Bacteria | Brevibacteriaceae | Brevibacterium mcbrellneri | Di(2-ethylhexyl) phthalate | [108] |
Di-n-butyl phthalate | ||||
Fungi | Davidiellaceae | Penicillium skrjabinii | Di-n-butyl phthalate | [107] |
Fungi | Davidiellaceae | Penicillium olsonii | Di(2-ethylhexyl) phthalate | [111] |
Bacteria | Helicobacteraceae | Helicobacter pylori | Diethyl phthalate | [38] |
Bacteria | Streptomycetaceae | Streptomyces melanosporofaciens | Di-n-butyl phthalate | [109] |
Bacteria | Streptomycetaceae | Streptomyces albidoflavus | Di-n-butyl phthalate | [112] |
Bacteria | Streptomycetaceae | Streptomyces bangladeshensis | Di(2-ethylhexyl) phthalate | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhu, X.; Zhou, S.; Cheng, Z.; Shi, K.; Zhang, C.; Shao, H. Phthalic Acid Esters: Natural Sources and Biological Activities. Toxins 2021, 13, 495. https://doi.org/10.3390/toxins13070495
Huang L, Zhu X, Zhou S, Cheng Z, Shi K, Zhang C, Shao H. Phthalic Acid Esters: Natural Sources and Biological Activities. Toxins. 2021; 13(7):495. https://doi.org/10.3390/toxins13070495
Chicago/Turabian StyleHuang, Ling, Xunzhi Zhu, Shixing Zhou, Zhenrui Cheng, Kai Shi, Chi Zhang, and Hua Shao. 2021. "Phthalic Acid Esters: Natural Sources and Biological Activities" Toxins 13, no. 7: 495. https://doi.org/10.3390/toxins13070495