Long-Term Environmental Methylmercury Exposure Is Associated with Peripheral Neuropathy and Cognitive Impairment among an Amazon Indigenous Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Population and Research Site
2.3. Clinical Evaluation and General Physical Examination
2.4. Neurological Examinations
2.4.1. Cognitive Evaluation
2.4.2. Motor Function and Coordination
2.4.3. Balance and Gait Evaluation
2.4.4. Sensory Testing
- Sharp nickel-plated pin (Bacchi® number 29): metal pin, commonly used in sewing, but which can be used for physical neurological examination and assessment of pin-prick pain sensitivity.
- Von Frey 10 g monofilament: also known as an esthesiometer, its function is to measure the tactile sensitivity of the skin. It is a nylon monofilament that bends when it is applied with certain force to the skin, so that it always applies the same force to the skin regardless of the examiner.
- Dry cotton wad: to determinate the dynamic tactile sensitivity (i.e., sensitivity to brushing touch).
- 128 Hz tuning fork: An instrument used for tuning musical instruments due to its ability to vibrate at a specific frequency. In neurological examination, this instrument can be used at low frequencies to evaluate vibratory sensitivity. Furthermore, as it is a metallic object and has a cold temperature, it can also be employed to assess thermal sensitivity to cold during physical examinations.
2.4.5. Cranial Nerve Examination
2.4.6. Peripheral Neuropathy Diagnosis
2.5. Blood Testing
2.6. MeHg Exposure Assessment
2.7. Statistical Analyses
3. Results
3.1. Studied Population
3.2. Exposure to Methylmercury
3.3. Peripheral Neuropathy
3.4. Reduced Cognitive Performance
Reduced Cognitive Performance (n = 54) | Normal Cognitive Performance (n = 86) | p | |
---|---|---|---|
Female gender A | 35 (64.8%) | 45 (52.3%) | 0.146 |
Age (years) | 30.7 ± 17.2 (12–75.7) | 30.9 ± 16.6 (12–74.7) | 0.891 |
Monthly income (R$) | 1415.69 ± 931.00 (400–3450) | 1273.32 ± 970.03 (0–3000) | 0.330 |
BMI (kg/m2) | 22.3 ± 2.6 (17.2–28.8) | 22.8 ± 3.2 (17.1–33.1) | 0.325 |
SBP (mmHg) | 104.7 ± 9.9 (83–130) | 110.3 ± 11.3 (86.5–145.5) | 0.004 * |
DBP (mmHg) | 67.2 ± 8.6 (51–92.5) | 72.2 ± 9.8 (41.5–96) | 0.003 * |
Abnormal blood pressure A,B | 1 (1.9%) | 1 (1.2%) | 1.000 |
Hb (mg/dL) | 13.3 ± 1.3 (10.4–16.4) | 13.8 ± 1.4 (10.6–17.2) | 0.034 * |
Serum glucose levels (mg/dL) | 94.2 ± 15.4 (61–136) | 92.9 ± 18.1 (56–150) | 0.542 |
Serum glucosis > 126 mg/dL A | 7 (13.0%) | 11 (12.8%) | 0.976 |
Peripheral neuropathy A | 21 (38.9%) | 23 (26.7%) | 0.132 |
Hair MeHg levels (μg/g) | 4.34 ± 1.65 (1.15–7.50) | 3.54 ± 1.53 (1.17–10.11) | 0.002 * |
Hair MeHg > 2 μg/g | 73 (84.9%) | 49 (90.7%) | 0.314 |
Hair MeHg > 6 μg/g | 8 (14.8%) | 4 (4.7%) | 0.059 |
Peripheral Neuropathy | ||||||
---|---|---|---|---|---|---|
Prevalence Ratio (Crude) | 95%CI | p | Prevalence Ratio (Adjusted) | 95%CI | p | |
Female gender | 1.040 | 0.642–1.684 | 0.874 | --- | --- | --- |
Age (years) | 1.027 | 1.016–1.038 | <0.001 * | 1.026 | 1.014–1.037 | <0.001 * |
BMI (kg/m2) | 1.040 | 0.967–1.120 | 0.9290 | --- | --- | --- |
Abnormal blood pressure A | 2.207 | 0.956–5.096 | 0.064 | --- | --- | --- |
Hb (g/dL) | 1.024 | 0.857–1.224 | 0.792 | --- | --- | --- |
Serum glucose levels (mg/dL) | 0.999 | 0.986–1.011 | 0.999 | --- | --- | --- |
Serum glucose > 126 mg/dL | 0.714 | 0.318–1.606 | 0.416 | --- | --- | --- |
Hair MeHg levels (μg/g) | 1.143 | 1.006–1.299 | 0.040 * | --- | --- | --- |
Hair MeHg > 2 μg/g | 0.810 | 0.426–1.542 | 0.522 | --- | --- | --- |
Hiar MeHg > 3.7 μg/g | 1.304 | 0.807–2.109 | 0.259 | --- | --- | --- |
Hair MeHg > 6 μg/g | 2.028 | 1.218–3.376 | 0.007 * | 1.787 | 1.150–2.777 | 0.010 * |
Reduced Cognitive Performance | ||||||
Prevalence Ratio (Crude) | 95%CI | p | Prevalence Ratio (Adjusted) | 95%CI | p | |
Female gender | 1.382 | 0.883–2.160 | 0.156 | --- | --- | --- |
Age (years) | 1.000 | 0.987–1.012 | 0.962 | --- | --- | --- |
BMI (kg/m2) | 0.960 | 0.909–1.014 | 0.142 | --- | --- | --- |
Abnormal blood pressure A | 1.292 | 0.318–5.251 | 0.720 | --- | --- | --- |
Hb (g/dL) | 0.846 | 0.729–0.982 | 0.028 * | 0.835 | 0.719–0.971 | 0.019 * |
Serum glucose levels (mg/dL) | 1.003 | 0.991–1.015 | 0.662 | --- | --- | --- |
Serum glucose > 126 mg/dL | 1.009 | 0.543–1.878 | 0.976 | --- | --- | --- |
MeHg levels (μg/g) | 1.186 | 1.048–1.342 | 0.007 * | --- | --- | --- |
Hair MeHg > 2 μg/g | 1.446 | 0.666–3.141 | 0.352 | --- | --- | --- |
Hair MeHg > 3.7 μg/g | 1.664 | 1.077–2.571 | 0.022 * | --- | --- | --- |
Hair MeHg > 6 μg/g | 1.855 | 1.169–2.945 | 0.009 * | 1.959 | 1.160–3.308 | 0.012 * |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme; World Health Organization. Mercury—Environmental Health Criteria 1; United Nations Environment Programme: Nairobi, Kenya, 1976; ISBN 978-92-4-154061-2. [Google Scholar]
- Hong, Y.-S.; Kim, Y.-M.; Lee, K.-E. Methylmercury Exposure and Health Effects. J. Prev. Med. Public Health 2012, 45, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Mergler, D.; Anderson, H.A.; Chan, L.H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Panel on Health Risks and Toxicological Effects of Methylmercury Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Bakir, F.; Damluji, S.F.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; al-Rawi, N.Y.; Tikriti, S.; Dahahir, H.I.; Clarkson, T.W.; Smith, J.C.; et al. Methylmercury Poisoning in Iraq. Science 1973, 181, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Bakir, F.; Rustam, H.; Tikriti, S.; Al-Damluji, S.F.; Shihristani, H. Clinical and Epidemiological Aspects of Methylmercury Poisoning. Postgrad. Med. J. 1980, 56, 1–10. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme; World Health Organization; International Labour Organisation. Methylmercury—Environmental Health Criteria 101; United Nations Environment Programme: Nairobi, Kenya, 1990; ISBN 978-92-4-157101-2. [Google Scholar]
- Basta, P.C. Gold mining in the Amazon: The origin of the Yanomami health crisis. Cad. Saude Publica 2023, 39, e00111823. [Google Scholar] [CrossRef]
- Morel, F.; Kraepiel, A.; Amyot, M. The Chemical Cycle and Bioaccumulation of Mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Pfeiffer, W.C.; de Lacerda, L.D. Mercury Inputs into the Amazon Region, Brazil. Environ. Technol. Lett. 1988, 9, 325–330. [Google Scholar] [CrossRef]
- Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopes-Araújo, A.; Santos-Sacramento, L.; Yuki Takeda, P.; de Matos Macchi, B.; do Nascimento, J.L.M.; Maia, C.S.F.; Lima, R.R.; Arrifano, G.P. Mercury: What Can We Learn from the Amazon? Environ. Int. 2021, 146, 106223. [Google Scholar] [CrossRef]
- Azevedo, L.S.; Pestana, I.A.; Almeida, M.G.; Ferreira da Costa Nery, A.; Bastos, W.R.; Magalhães Souza, C.M. Mercury Biomagnification in an Ichthyic Food Chain of an Amazon Floodplain Lake (Puruzinho Lake): Influence of Seasonality and Food Chain Modeling. Ecotoxicol. Environ. Saf. 2021, 207, 111249. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Soares-Filho, B.; Sanchez, L.E.; Oviedo, A.; Sonter, L.J. Proposed Legislation to Mine Brazil’s Indigenous Lands Will Threaten Amazon Forests and Their Valuable Ecosystem Services. One Earth 2020, 3, 356–362. [Google Scholar] [CrossRef]
- Lino, A.S.; Kasper, D.; Guida, Y.S.; Thomaz, J.R.; Malm, O. Total and Methyl Mercury Distribution in Water, Sediment, Plankton and Fish along the Tapajós River Basin in the Brazilian Amazon. Chemosphere 2019, 235, 690–700. [Google Scholar] [CrossRef]
- Arrifano, G.P.F.; Martín-Doimeadios, R.C.R.; Jiménez-Moreno, M.; Ramírez-Mateos, V.; da Silva, N.F.S.; Souza-Monteiro, J.R.; Augusto-Oliveira, M.; Paraense, R.S.O.; Macchi, B.M.; do Nascimento, J.L.M.; et al. Large-Scale Projects in the Amazon and Human Exposure to Mercury: The Case-Study of the Tucuruí Dam. Ecotoxicol. Environ. Saf. 2018, 147, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Santos-Sacramento, L.; Arrifano, G.P.; Lopes-Araújo, A.; Augusto-Oliveira, M.; Albuquerque-Santos, R.; Takeda, P.Y.; Souza-Monteiro, J.R.; Macchi, B.M.; do Nascimento, J.L.M.; Lima, R.R.; et al. Human Neurotoxicity of Mercury in the Amazon: A Scoping Review with Insights and Critical Considerations. Ecotoxicol. Environ. Saf. 2021, 208, 111686. [Google Scholar] [CrossRef] [PubMed]
- Santos-Lima, C.D.; de Souza Mourão, D.; de Carvalho, C.F.; Souza-Marques, B.; Vega, C.M.; Gonçalves, R.A.; Argollo, N.; Menezes-Filho, J.A.; Abreu, N.; de Souza Hacon, S. Neuropsychological Effects of Mercury Exposure in Children and Adolescents of the Amazon Region, Brazil. Neurotoxicology 2020, 79, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Horvat, M.; Evers, D.C.; Zastenskaya, I.; Weihe, P.; Tempowski, J. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ. Health Perspect. 2018, 126, 106001. [Google Scholar] [CrossRef]
- Sharma, S.; Baligar, R.S.; Singh, H.B.; Butcher, R.J. Reaction of a Metallamacrocycle Leading to a Mercury(II)⋯Palladium(II)⋯Mercury(II) Interaction. Angew. Chem. Int. Ed. Engl. 2009, 48, 1987–1990. [Google Scholar] [CrossRef] [PubMed]
- Bauch, S.C.; Birkenbach, A.M.; Pattanayak, S.K.; Sills, E.O. Public Health Impacts of Ecosystem Change in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2015, 112, 7414–7419. [Google Scholar] [CrossRef]
- Sing, K.; Hryhorczuk, D.; Saffirio, G.; Sinks, T.; Paschal, D.; Sorensen, J.; Chen, E. Organic Mercury Levels among the Yanomama of the Brazilian Amazon Basin. Ambio 2003, 32, 434–439. [Google Scholar] [CrossRef]
- Vega, C.M.; Orellana, J.D.Y.; Oliveira, M.W.; Hacon, S.S.; Basta, P.C. Human Mercury Exposure in Yanomami Indigenous Villages from the Brazilian Amazon. Int. J. Environ. Res. Public Health 2018, 15, 1051. [Google Scholar] [CrossRef]
- FAO/WHO. Evaluation of Certain Food Additives and Contaminants: Thirty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://www.who.int/publications-detail-redirect/9241207760 (accessed on 24 February 2024).
- Legrand, M.; Feeley, M.; Tikhonov, C.; Schoen, D.; Li-Muller, A. Methylmercury Blood Guidance Values for Canada. Can. J. Public Health 2010, 101, 28–31. [Google Scholar] [CrossRef]
- United States Environment Protection Agency (EPA). Methylmercury (MeHg) CASRN 22967-92-6 |IRIS| US EPA, ORD. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=73 (accessed on 24 February 2024).
- de Vasconcellos, A.C.S.; Ferreira, S.R.B.; de Sousa, C.C.; de Oliveira, M.W.; de Oliveira Lima, M.; Basta, P.C. Health Risk Assessment Attributed to Consumption of Fish Contaminated with Mercury in the Rio Branco Basin, Roraima, Amazon, Brazil. Toxics 2022, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Khoury, E.D.T.; da Silva Souza, G.; da Costa, C.A.; de Araújo, A.A.K.; de Oliveira, C.S.B.; de Lima Silveira, L.C.; Pinheiro, M.D.C.N. Somatosensory Psychophysical Losses in Inhabitants of Riverside Communities of the Tapajós River Basin, Amazon, Brazil: Exposure to Methylmercury Is Possibly Involved. PLoS ONE 2015, 10, e0144625. [Google Scholar] [CrossRef]
- Basta, P.C.; Viana, P.V.D.S.; Vasconcellos, A.C.S.D.; Périssé, A.R.S.; Hofer, C.B.; Paiva, N.S.; Kempton, J.W.; Ciampi de Andrade, D.; Oliveira, R.A.A.D.; Achatz, R.W.; et al. Mercury Exposure in Munduruku Indigenous Communities from Brazilian Amazon: Methodological Background and an Overview of the Principal Results. Int. J. Environ. Res. Public Health 2021, 18, 9222. [Google Scholar] [CrossRef] [PubMed]
- Brucki, S.M.D.; Nitrini, R. Subjective Memory Impairment in a Rural Population with Low Education in the Amazon Rainforest: An Exploratory Study. Int. Psychogeriatr. 2009, 21, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Brucki, S.M.; Malheiros, S.M.; Okamoto, I.H.; Bertolucci, P.H. Normative data on the verbal fluency test in the animal category in our milieu. Arq. Neuropsiquiatr. 1997, 55, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.; Damin, A.E.; Porto, C.S.; Caramelli, P.; Nitrini, R. The Abbreviated Form of the Brief Cognitive Battery in the Diagnosis of Dementia in Alzheimer’s Disease. Dement. Neuropsychol. 2009, 3, 327. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.A.; Caramelli, P. Normative Data for Middle-Aged Brazilians in Verbal Fluency (Animals and FAS), Trail Making Test (TMT) and Clock Drawing Test (CDT). Dement. Neuropsychol. 2020, 14, 14–23. [Google Scholar] [CrossRef]
- Caramelli, P.; Carthery-Goulart, M.T.; Porto, C.S.; Charchat-Fichman, H.; Nitrini, R. Category Fluency as a Screening Test for Alzheimer Disease in Illiterate and Literate Patients. Alzheimer Dis. Assoc. Disord. 2007, 21, 65–67. [Google Scholar] [CrossRef]
- Williams, M. Manual Muscle Testing, Development and Current Use. Phys. Ther. Rev. 1956, 36, 797–805. [Google Scholar] [CrossRef]
- Kandel, E.; Koester, J.D.; Mack, S.H.; Siegelbaum, S. Principles of Neural Science, 6th ed.; McGraw Hill: New York, NY, USA, 2021; ISBN 978-1-259-64223-4. [Google Scholar]
- Campbell, W.W.; Barohn, R.J. Dejong’s the Neurologic Examination, 8th ed.; LWW: Philadelphia, PA, USA, 2019; ISBN 978-1-4963-8616-8. [Google Scholar]
- Reimer, M.; Forstenpointner, J.; Hartmann, A.; Otto, J.C.; Vollert, J.; Gierthmühlen, J.; Klein, T.; Hüllemann, P.; Baron, R. Sensory Bedside Testing: A Simple Stratification Approach for Sensory Phenotyping. Pain Rep. 2020, 5, e820. [Google Scholar] [CrossRef]
- England, J.D.; Gronseth, G.S.; Franklin, G.; Miller, R.G.; Asbury, A.K.; Carter, G.T.; Cohen, J.A.; Fisher, M.A.; Howard, J.F.; Kinsella, L.J.; et al. Distal Symmetric Polyneuropathy: A Definition for Clinical Research: Report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2005, 64, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, L.G.; Malta, D.C.; Szwarcwald, C.L.; Bacal, N.S.; Cuder, M.A.M.; Pereira, C.A.; Figueiredo, A.W.; da Silva, A.G.; Machado, Í.E.; da Silva, W.A.; et al. Reference values for blood count laboratory tests in the Brazilian adult population, National Health Survey. Rev. Bras. Epidemiol. 2019, 22 (Suppl. 2), E190003.SUPL.2. [Google Scholar] [CrossRef]
- Zwart, A.; van Assendelft, O.W.; Bull, B.S.; England, J.M.; Lewis, S.M.; Zijlstra, W.G. Recommendations for Reference Method for Haemoglobinometry in Human Blood (ICSH Standard 1995) and Specifications for International Haemiglobinocyanide Standard (4th Edition). J. Clin. Pathol. 1996, 49, 271–274. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme; World Health Organization. Guidance for Identifying Populations at Risk from Mercury Exposure; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Clarkson, T.W.; Magos, L. The Toxicology of Mercury and Its Chemical Compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef]
- Berglund, M.; Lind, B.; Björnberg, K.A.; Palm, B.; Einarsson, O.; Vahter, M. Inter-Individual Variations of Human Mercury Exposure Biomarkers: A Cross-Sectional Assessment. Environ. Health 2005, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Souza-Araujo, J.; Giarrizzo, T.; Lima, M.O.; Souza, M.B.G. Mercury and Methyl Mercury in Fishes from Bacajá River (Brazilian Amazon): Evidence for Bioaccumulation and Biomagnification. J. Fish Biol. 2016, 89, 249–263. [Google Scholar] [CrossRef]
- Kehrig, H.A.; Malm, O.; Akagi, H.; Guimarães, J.R.; Torres, J.P. Methylmercury in Fish and Hair Samples from the Balbina Feservoir, Brazilian Amazon. Environ. Res. 1998, 77, 84–90. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Verbel, J.O.; Ceballos, E.L.; Benitez, L.N. Total Mercury and Methylmercury Concentrations in Fish from the Mojana Region of Colombia. Environ. Geochem. Health 2008, 30, 21–30. [Google Scholar] [CrossRef]
- Crump, K.S.; Kjellström, T.; Shipp, A.M.; Silvers, A.; Stewart, A. Influence of Prenatal Mercury Exposure upon Scholastic and Psychological Test Performance: Benchmark Analysis of a New Zealand Cohort. Risk Anal. 1998, 18, 701–713. [Google Scholar] [CrossRef]
- WHO. Guidance for Identifying Populations at Risk from Mercury Exposure; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson New International Edition; Pearson Education Limited: Harlow, UK, 2014; ISBN 978-1-292-02190-4. [Google Scholar]
- WHO. Joint FAO/WHO Expert Committee on Food Additives (JECFA), Report of the Tenth Section. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-10%252FReport%252FREP16_CFe.pdf (accessed on 25 January 2024).
- Karri, V.; Schuhmacher, M.; Kumar, V. Heavy Metals (Pb, Cd, As and MeHg) as Risk Factors for Cognitive Dysfunction: A General Review of Metal Mixture Mechanism in Brain. Environ. Toxicol. Pharmacol. 2016, 48, 203–213. [Google Scholar] [CrossRef]
- Berzas Nevado, J.J.; Rodríguez Martín-Doimeadios, R.C.; Guzmán Bernardo, F.J.; Jiménez Moreno, M.; Herculano, A.M.; do Nascimento, J.L.M.; Crespo-López, M.E. Mercury in the Tapajós River Basin, Brazilian Amazon: A Review. Environ. Int. 2010, 36, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Evaluation of Certain Food Additives and Contaminants: Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives; [Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Rome 2003]; Joint Expert Committee on Food Additives (Ed.) WHO Technical Report Series; WHO: Geneva, Switzerland, 2004; ISBN 978-92-4-120922-9. [Google Scholar]
- Andreoli, V.; Sprovieri, F. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview. Int. J. Environ. Res. Public Health 2017, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, T.; Kadowaki, T.; Yasuda, M.; Kado, Y. Neurological and Neurocognitive Impairments in Adults with a History of Prenatal Methylmercury Poisoning: Minamata Disease. Int. J. Environ. Res. Public Health 2023, 20, 6173. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, S.; Fujino, T.; Shigeoka, S.; Yorifuji, T. Characteristics of Abnormalities in Somatosensory Submodalities Observed in Residents Exposed to Methylmercury. Toxics 2023, 11, 1023. [Google Scholar] [CrossRef] [PubMed]
- Puty, B.; Leão, L.K.R.; Crespo-Lopez, M.E.; Almeida, A.P.C.P.S.C.; Fagundes, N.C.F.; Maia, L.C.; Lima, R.R. Association between Methylmercury Environmental Exposure and Neurological Disorders: A Systematic Review. J. Trace Elem. Med. Biol. 2019, 52, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Shiota, Y.; Yaoi, K.; Taki, Y.; Nouchi, R.; Yokoyama, R.; Kotozaki, Y.; Nakagawa, S.; Sekiguchi, A.; Iizuka, K.; et al. Mercury Levels in Hair Are Associated with Reduced Neurobehavioral Performance and Altered Brain Structures in Young Adults. Commun. Biol. 2022, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.M.; Sáňka, O.; Kalina, J.; Scheringer, M. An Overview of Worldwide and Regional Time Trends in Total Mercury Levels in Human Blood and Breast Milk from 1966 to 2015 and Their Associations with Health Effects. Environ. Int. 2019, 125, 300–319. [Google Scholar] [CrossRef]
- Barbieri, F.L.; Gardon, J. Hair Mercury Levels in Amazonian Populations: Spatial Distribution and Trends. Int. J. Health Geogr. 2009, 8, 71. [Google Scholar] [CrossRef]
- Harada, M.; Nakanishi, J.; Yasoda, E.; Pinheiro, M.C.; Oikawa, T.; de Assis Guimarâes, G.; da Silva Cardoso, B.; Kizaki, T.; Ohno, H. Mercury Pollution in the Tapajos River Basin, Amazon: Mercury Level of Head Hair and Health Effects. Environ. Int. 2001, 27, 285–290. [Google Scholar] [CrossRef]
- Peplow, D.; Augustine, S. Neurological Abnormalities in a Mercury Exposed Population among Indigenous Wayana in Southeast Suriname. Environ. Sci. Process. Impacts 2014, 16, 2415–2422. [Google Scholar] [CrossRef]
- Oliveira, R.A.A.D.; Pinto, B.D.; Rebouças, B.H.; Ciampi De Andrade, D.; Vasconcellos, A.C.S.D.; Basta, P.C. Neurological Impacts of Chronic Methylmercury Exposure in Munduruku Indigenous Adults: Somatosensory, Motor, and Cognitive Abnormalities. Int. J. Environ. Res. Public Health 2021, 18, 10270. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.C. Chronic Neurological Disease Due to Methylmercury Poisoning. Can. J. Neurol. Sci. 2018, 45, 620–623. [Google Scholar] [CrossRef]
- Latov, N.; Kumar, G.; Vo, M.L.; Chin, R.L.; Carey, B.T.; Langsdorf, J.A.; Feuer, N.T. Elevated Blood Mercury Levels in Idiopathic Axonal Neuropathy. JAMA Neurol. 2015, 72, 474–475. [Google Scholar] [CrossRef] [PubMed]
- Barrell, K.; Smith, A.G. Peripheral Neuropathy. Med. Clin. N. Am. 2019, 103, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Hicks, C.W.; Wang, D.; Windham, B.G.; Matsushita, K.; Selvin, E. Prevalence of Peripheral Neuropathy Defined by Monofilament Insensitivity in Middle-Aged and Older Adults in Two US Cohorts. Sci. Rep. 2021, 11, 19159. [Google Scholar] [CrossRef]
- Lehmann, H.C.; Wunderlich, G.; Fink, G.R.; Sommer, C. Diagnosis of Peripheral Neuropathy. Neurol. Res. Pract. 2020, 2, 20. [Google Scholar] [CrossRef]
- Cabezas-Cerrato, J. The Prevalence of Clinical Diabetic Polyneuropathy in Spain: A Study in Primary Care and Hospital Clinic Groups. Neuropathy Spanish Study Group of the Spanish Diabetes Society (SDS). Diabetologia 1998, 41, 1263–1269. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Angley, M.; Bejerano, S.; Kahe, K. The Association between Serum Mercury Concentration and Mild Cognitive Impairment: The REGARDS Study. Alzheimer’s Dement. 2022, 18, e065804. [Google Scholar] [CrossRef]
- Grandjean, P.; Weihe, P.; Debes, F.; Choi, A.L.; Budtz-Jørgensen, E. Neurotoxicity from Prenatal and Postnatal Exposure to Methylmercury. Neurotoxicol. Teratol. 2014, 43, 39–44. [Google Scholar] [CrossRef]
- Counter, S.A.; Buchanan, L.H.; Ortega, F. Neurocognitive Screening of Mercury-Exposed Children of Andean Gold Miners. Int. J. Occup. Environ. Health 2006, 12, 209–214. [Google Scholar] [CrossRef]
- Chaisungnern, K.; Benjapong, W.; Charernwat, P.; Panpunuan, P.; Susiriwatananont, N.; Sritara, P.; Sirivarasai, J. Environmental Mercury Exposure and The Alteration in Cognitive Function. Thai J. Toxicol. 2018, 33, 51–68. [Google Scholar]
- Fonseca, M.D.F.; Dórea, J.G.; Bastos, W.R.; Marques, R.C.; Torres, J.P.M.; Malm, O. Poor Psychometric Scores of Children Living in Isolated Riverine and Agrarian Communities and Fish-Methylmercury Exposure. Neurotoxicology 2008, 29, 1008–1015. [Google Scholar] [CrossRef]
- Grandjean, P.; White, R.F.; Nielsen, A.; Cleary, D.; de Oliveira Santos, E.C. Methylmercury Neurotoxicity in Amazonian Children Downstream from Gold Mining. Environ. Health Perspect. 1999, 107, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Dórea, J.G.; McManus, C.; Leão, R.S.; Brandão, K.G.; Marques, R.C.; Vieira, I.H.I.; Guimarães, J.-R.D.; Malm, O. Hydroelectric Reservoir Inundation (Rio Madeira Basin, Amazon) and Changes in Traditional Lifestyle: Impact on Growth and Neurodevelopment of Pre-School Children. Public Health Nutr. 2011, 14, 661–669. [Google Scholar] [CrossRef]
- Marques, R.C.; Garrofe Dórea, J.; Rodrigues Bastos, W.; de Freitas Rebelo, M.; de Freitas Fonseca, M.; Malm, O. Maternal Mercury Exposure and Neuro-Motor Development in Breastfed Infants from Porto Velho (Amazon), Brazil. Int. J. Hyg. Environ. Health 2007, 210, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.C.; Syed, N.I.; Lorscheider, F.L. Retrograde Degeneration of Neurite Membrane Structural Integrity of Nerve Growth Cones Following in Vitro Exposure to Mercury. Neuroreport 2001, 12, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Tinkov, A.A.; Dadar, M.; Rahman, M.M.; Chirumbolo, S.; Skalny, A.V.; Skalnaya, M.G.; Haley, B.E.; Ajsuvakova, O.P.; Aaseth, J. Insights into the Potential Role of Mercury in Alzheimer’s Disease. J. Mol. Neurosci. 2019, 67, 511–533. [Google Scholar] [CrossRef]
- dos Santos Vianna, A.; de Matos, E.P.; de Jesus, I.M.; Asmus, C.I.R.F.; Câmara, V.D.M. Human Exposure to Mercury and Its Hematological Effects: A Systematic Review. Cad. Saúde Pública 2019, 35, e00091618. [Google Scholar] [CrossRef]
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M.; Fiorim, J.; Rossi de Batista, P.; Fioresi, M.; Rossoni, L.; et al. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. J. Biomed. Biotechnol. 2012, 2012, 949048. [Google Scholar] [CrossRef]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer Disease. Nat. Rev. Dis. Primers 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: Review. JAMA 2019, 322, 1589–1599. [Google Scholar] [CrossRef]
MeHg ≤ 6.0 μg/g (n = 137) | MeHg > 6.0 μg/g (n = 16) | p | |
---|---|---|---|
Female gender | 79 (57.7%) | 8 (50.0%) | 0.558 |
Age (years) A | 31.55 ± 16.84 (12–75.7) | 35.18 ± 18.45 (12.5–69.8) | 0.315 |
Monthly income (R$) A | 1345.82 ± 956.04 (0–3450) | 1356.88 ± 828.55 (350–3000) | 0.956 |
BMI (kg/m2) A | 22.62 ± 3.0 (17.1–33.1) | 22.4 ± 2.9 (18.8–28.8) | 0.672 |
SBP (mmHg) A | 108.68 ± 11.6 (83–155.5) | 106.6 ± 10.88 (91–130.0) | 0.497 |
DBP (mmHg) A | 70.67 ± 9.92 (41.5–98.5) | 68.09 ± 7.76 (54.5–83.0) | 0.313 |
Abnormal blood pressure B | 3 (2.2%) | 0 (0%) | 1.000 |
Hb (mg/dL) A | 13.57 ± 1.38 (10.4–17.2) | 13.92 ± 1.22 (11.8–16.1) | 0.360 |
Serum glucose levels (mg/dL) A | 94.02 ± 18 (56–150) | 96.88 ± 16.2 (71–128) | 0.427 |
Serum glucose > 126 mg/dL | 19 (13.9%) | 2 (12.5%) | 1.000 |
Previous medical conditions | 14 (10.2%) | 3 (18.8%) | 0.391 |
Abnormal verbal fluency test | 46 (33.6%) | 7 (43.8%) | 0.418 |
Verbal fluency test score A | 14.8 ± 5.7 (4–30) | 13.7 ± 5.9 (7–25) | 0.522 |
Abnormal late recall test | 8 (7.1%) | 1 (10%) | 0.546 |
Delayed recall score A | 8.2 ± 1.2 (3–10) | 8.1 ± 1.4 (6–10) | 0.678 |
Abnormal cognitive testing C | 46 (35.9%) | 8 (66.7%) | 0.059 |
Motor deficit | 3 (2.2%) | 0 (0%) | 1.000 |
Toe amyotrophy | 5 (3.6%) | 1 (6.2%) | 0.491 |
Abnormal gait | 11 (8%) | 1 (6.2%) | 1.000 |
Abnormal tonus | 2 (1.5%) | 0 (0.0%) | 1.000 |
Bradykinesia | 2 (1.5%) | 0 (0%) | 1.000 |
Abnormal ankle reflex | 22 (16.1%) | 4 (25.0%) | 0.478 |
Distal sensory deficit | 18 (13.1%) | 3 (18.8%) | 0.463 |
Abnormal nociception | 19 (13.9%) | 6 (37.5%) | 0.027 * |
Thermal sensory deficit | 21 (15.3%) | 2 (12.5%) | 1.000 |
Abnormal deep sensory | 10 (7.3%) | 3 (18.8%) | 0.140 |
Peripheral neuropathy | 38 (42.1%) | 9 (56.2%) | 0.041 * |
Speech disturbance | 1 (0.7%) | 0 (0%) | 1.000 |
Visual field deficits | 1 (0.7%) | 0 (0%) | 1.000 |
Peripheral Neuropathy Present (n = 47) | Peripheral Neuropathy Absent (n = 107) | p | |
---|---|---|---|
Female gender A | 27 (57.4%) | 26 (56.1%) | 0.874 |
Age (years) | 39.7 ± 20.1 (12–75.7) | 27.1 ± 13.6 (12–71.5) | <0.001 * |
Monthly income (R$) | 1270.39 ± 784.70 (0–2980) | 1322.50 ± 1006.28 (0–3450) | 0.782 |
BMI (kg/m2) | 22.9 ± 3.35 (17.6–33.1) | 22.3 ± 2.9 (13.2–31.5) | 0.303 |
SBP (mmHg) | 111.4 ± 12.4 (93.5–155.5) | 107.1 ± 10.8 (83–139.5) | 0.064 |
DBP (mmHg) | 71.81 ± 9.1 (53.5–98.5) | 69.7 ± 9.9 (41.5–92.5) | 0.293 |
Abnormal blood pressure A,B | 2 (4.3%) | 1 (1%) | 0.226 |
Hb (mg/dL) | 13.7 ± 1.5 (10.9–17.2) | 13.6 ± 1.32 (10.4–16.7) | 0.942 |
Serum glucose levels (mg/dL) | 93.8 ± 14.7 (70–130) | 94.4 ± 19.0 (56–150) | 0.799 |
Serum glucosis > 126 mg/dL A | 5 (10.6%) | 17 (15.9%) | 0.391 |
Abnormal cognitive testing A,C | 21 (47.7%) | 33 (34.4%) | 0.132 |
Hair MeHg levels (μg/g) | 3.7 ± 1.4 (1.2–7.0) | 4.3 ± 2.1 (1.4–10.1) | 0.162 |
Hair MeHg > 2 μg/g | 40 (85.1%) | 94 (88.7%) | 0.536 |
Hair MeHg > 6 μg/g | 9 (19.1%) | 7 (6.6%) | 0.041 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebouças, B.H.; Kubota, G.T.; Oliveira, R.A.A.; Pinto, B.D.; Cardoso, R.M.; Vasconcellos, A.C.S.; Basta, P.C. Long-Term Environmental Methylmercury Exposure Is Associated with Peripheral Neuropathy and Cognitive Impairment among an Amazon Indigenous Population. Toxics 2024, 12, 212. https://doi.org/10.3390/toxics12030212
Rebouças BH, Kubota GT, Oliveira RAA, Pinto BD, Cardoso RM, Vasconcellos ACS, Basta PC. Long-Term Environmental Methylmercury Exposure Is Associated with Peripheral Neuropathy and Cognitive Impairment among an Amazon Indigenous Population. Toxics. 2024; 12(3):212. https://doi.org/10.3390/toxics12030212
Chicago/Turabian StyleRebouças, Bruno H., Gabriel T. Kubota, Rogério A. A. Oliveira, Bruna D. Pinto, Roberta M. Cardoso, Ana C. S. Vasconcellos, and Paulo C. Basta. 2024. "Long-Term Environmental Methylmercury Exposure Is Associated with Peripheral Neuropathy and Cognitive Impairment among an Amazon Indigenous Population" Toxics 12, no. 3: 212. https://doi.org/10.3390/toxics12030212