Time Optimal Feedback Control for 3D Navier–Stokes-Voigt Equations
Abstract
:1. Introduction
2. Some Notations, Definitions and Preliminaries
- (i)
- for any ,
- (ii)
- for any ,
- (iii)
- for any ,in particular,
3. Existence Results for Admissible Trajectories
4. Existence Results for Time Optimal Control
5. Application
5.1. Clarke’s Subdifferential Systems
5.2. Time Optimal Control for Differential Hemivariational Inequalities
- (i)
- is a proper convex l.s.c. functional, is a linear continuous operator, is a l.s.c. set-valued mapping, and is a locally Lipschitz function such that is monotone for all .
- (ii)
- For each there holds for all , and one has , where there exists such that for all , means the Hausdorff measure of noncompactness.
- (iii)
- There is a continuous function with such that for all and we can find such that
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oskolkov, A.P. The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Nauchn. Semin. LOMI 1973, 38, 98–136. [Google Scholar]
- Sviridyuk, G.A. On a model of the dynamics of a weakly compressible viscoelastic fluid. Izv. Vyssh. Uchebn. Zaved. Math. 1994, 1, 62–70. [Google Scholar]
- Cheskidov, A.; Kavlie, L. Degenerate Pullback Attractors for the 3D Navier–Stokes Equations. J. Math. Fluid Mech. 2015, 17, 411–421. [Google Scholar] [CrossRef]
- Kalantarov, V.K.; Levant, B.; Titi, E.S. Gevrey Regularity for the Attractor of the 3D Navier–Stokes–Voight Equations. J. Nonlinear Sci. 2009, 19, 133–152. [Google Scholar] [CrossRef]
- Anh, C.T.; Nguyet, T.M. Optimal control of the instationary three dimensional Navier-Stokes-Voigt equations. Numer. Funct. Anal. Optim. 2016, 37, 415–439. [Google Scholar] [CrossRef]
- Barbu, V. The time-optimal control problem for parabolic variational inequalities. Appl. Math. Optim. 1984, 11, 1–22. [Google Scholar] [CrossRef]
- Berkovitz, L.D. Optimal Control Theory; Springer: New York, NY, USA, 1974. [Google Scholar]
- Franklin, G.F.; Powell, J.D.; Emami-Naeini, A. Feedback Control of Dynamic Systems; Addison Weslwey: Boston, MA, USA, 1993. [Google Scholar]
- Li, X.W.; Li, Y.X.; Liu, Z.H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
- Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1971; 400p. [Google Scholar]
- Mees, A.L. Dynamics of Feedback Systems; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Prüss, J. Evolutionary Integral Equations and Applications; Monographs in Mathematics, 87; Birkhäuser: Basel, Switzerland, 1993. [Google Scholar]
- Xiao, C.E.; Zeng, B.; Liu, Z.H. Feedback control for fractional impulsive evolution systems. Comp. Math. Appl. 2015, 268, 924–936. [Google Scholar] [CrossRef]
- Zeng, B. Feedback control systems governed by evolution equations. Optimization 2019, 63, 1223–1243. [Google Scholar] [CrossRef]
- Zeng, B.; Liu, Z.H. Existence results for impulsive feedback control systems. Nonlinear Anal. HS 2019, 33, 1–16. [Google Scholar] [CrossRef]
- Fattorini, H.O. Time-optimal control of solutions of operational differential equations. SIAM J. Control 1964, 2, 54–59. [Google Scholar]
- Huang, Y.; Liu, Z.H.; Zeng, B. Optimal control of feedback control systems governed by hemivariational inequalities. Comput. Math. Appl. 2015, 70, 2125–2136. [Google Scholar] [CrossRef]
- Kamenskii, M.I.; Nistri, P.; Obukhovskii, V.V.; Zecca, P. Optimal feedback control for a semilinear evolution equation. J. Optim. Theory Appl. 1994, 82, 503–517. [Google Scholar] [CrossRef]
- Liu, Z.H.; Li, X.M.; Zeng, B. Optimal feedback control for fractional neutral dynamical systems. Optimization 2018, 67, 549–564. [Google Scholar] [CrossRef]
- Liu, Z.H.; Motreanu, D.; Zeng, S.D. Generalized penalty and regularization method for differential variational-hemivariationak inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhou, Y.; Wei, W. Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Syst. Contr. Lett. 2012, 61, 472–476. [Google Scholar] [CrossRef]
- Yong, J.M. Time optimal controls for semilinear distributed parameter systems-existence theory and necessary conditions. Kodai Math. J. 1991, 14, 239–253. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, L.M. Optimal feedback control of pedestrian counter flow in bidirectional corridors with multiple inflows. Appl. Math. Mod. 2021, 90, 474–487. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.H.; Papageorgiou, N.S. Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications. Nonlinearity 2023, 36, 1323–1348. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, S.; Motreanu, D. Partial differential hemivariational inequalities. Adv. Nonlinear Anal. 2018, 7, 571–586. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Wen, C.F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Wen, C.F.; Yao, J.C.; Zeng, S.D. Existence of Solutions for a Class of Noncoercive Variational–Hemivariational Inequalities Arising in Contact Problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Peng, S.; Wen, C.F. Optimal feedback control for a class of fractional evolution equations with history-dependent operators. Fract. Calc. Appl. Anal. 2022, 25, 1108–1130. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Papageorgiou, N.S. Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational- hemivariational inequalities. J. Differ. Equ. 2023, 342, 559–595. [Google Scholar] [CrossRef]
- Liu, Z.H.; Migórski, S.; Zeng, B. Optimal feedback control and controllability for hyperbolic evolution inclusions of Clarke’s subdifferential type. Comput. Math. Appl. 2017, 74, 3183–3194. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liu, Z.H.; Fu, X. Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 2014, 409, 446–458. [Google Scholar] [CrossRef]
- Bin, M.J.; Deng, H.Y.; Li, Y.X.; Zhao, J. Properties of the set of admissible “state control” part for a class of fractional semilinear evolution control systems. Fract. Calc. Appl. Anal. 2021, 24, 1275–1297. [Google Scholar] [CrossRef]
- Bin, M.J. Time optimal control for semilinear fractional evolution feedback control systems. Optimization 2019, 68, 819–832. [Google Scholar] [CrossRef]
- Bin, M.J.; Liu, Z.H. Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities. Nonlinear Anal. Real World Appl. 2019, 50, 613–632. [Google Scholar] [CrossRef]
- Bin, M.J.; Liu, Z.H. On the “bang-bang” principle for nonlinear evolution hemivariational inequalities control systems. J. Math. Anal. Appl. 2019, 480, 123364. [Google Scholar] [CrossRef]
- Fursikov, A.V.; Gunzburger, M.D.; Hou, L.S. Optimal boundary control for the evolutionary Navier–Stokes system: The three-dimensional case. SIAM J. Control Optim. 2005, 43, 2191–2232. [Google Scholar] [CrossRef]
- Hinze, M.; Kunisch, K. Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 2001, 40, 925–946. [Google Scholar] [CrossRef]
- Fattorini, H.O.; Sritharan, S.S. Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. R. Soc. Edinb. Sect. A Math. 1994, 124, 211–251. [Google Scholar] [CrossRef]
- Yu, K.M. On Boundary-Value Problems for Certain Models of Hydrodynamics with Slip Conditions at the Boundary. Ph.D. Thesis, Voronezh State University, Voronezh, Russia, 2007. [Google Scholar]
- Wang, G. Optimal controls of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 2002, 41, 583–606. [Google Scholar] [CrossRef]
- Zeng, B. Feedback control for non-stationary 3D Navier–Stokes–Voigt equations. Math. Mech. Solids 2020, 25, 2210–2221. [Google Scholar] [CrossRef]
- LaSalle, J.P. The Time Optimal Control Problem, Contributions to the Theory of Nonlinear Oscillations; Princeton University Press: Princeton, NJ, USA, 1960; Volume l, pp. 1–24. [Google Scholar]
- Warga, J. Optimal Control of Differential and Functional Equations; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis: Volume I Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1997. [Google Scholar]
- Li, X.J.; Yong, J.M. Optimal Control Theory for Infinite Dimensional Systems; Birkhäuser: Boston, MA, USA, 1995. [Google Scholar]
- Temam, R. Navier–Stokes Equations: Theory and Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Baranovskii, E.S. Strong Solutions of the Incompressible Navier–Stokes–Voigt Model. Mathematics 2020, 8, 181. [Google Scholar] [CrossRef]
- Clarke, F.H. Optimization and Nonsmooth Analysis; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Denkowski, Z.; Migórski, S.; Papageorgiou, N.S. An Introduction to Nonlinear Analysis: Theory; Kluwer Academic/Plenum Publishers: Boston, MA, USA; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2003. [Google Scholar]
- Migórski, S.; Ochal, A.; Sofonea, M. Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems; Advances in Mechanics and Mathematics 26; Springer: New York, NY, USA, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Bin, M.; Shi, C. Time Optimal Feedback Control for 3D Navier–Stokes-Voigt Equations. Symmetry 2023, 15, 1127. https://doi.org/10.3390/sym15051127
Li Y, Bin M, Shi C. Time Optimal Feedback Control for 3D Navier–Stokes-Voigt Equations. Symmetry. 2023; 15(5):1127. https://doi.org/10.3390/sym15051127
Chicago/Turabian StyleLi, Yunxiang, Maojun Bin, and Cuiyun Shi. 2023. "Time Optimal Feedback Control for 3D Navier–Stokes-Voigt Equations" Symmetry 15, no. 5: 1127. https://doi.org/10.3390/sym15051127
APA StyleLi, Y., Bin, M., & Shi, C. (2023). Time Optimal Feedback Control for 3D Navier–Stokes-Voigt Equations. Symmetry, 15(5), 1127. https://doi.org/10.3390/sym15051127