Chiral Binaphthol Fluorescent Materials Based on a Novel Click Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Polymer: PSE–R/S–BINOL50%
2.2. Preparation of PSE–R–BINOL1%
2.3. Device Fabrication Process of PSE–R/S–BINOL50%
2.3.1. Preparation of Fluorescent Transparent Film: PSE–R/S–BINOL50%
2.3.2. Preparation of Microspheres: PSE–R/S–BINOL50%
3. Results and Discussion
3.1. Structure Descripition
3.2. Photoluminescence Properties
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munusamy, S.; Iyer, S.K. A chiral (S)-BINOL based fluorescent sensor for the recognition of Fe(III) and cascade discrimination of α-amino acids. Tetrahedron Asymmetry 2016, 27, 492–497. [Google Scholar] [CrossRef]
- Marathe, S.; Karnik, A.V. Design, synthesis, and characterization of novel BINOL-based heterocyclic analogues as potential sensors. Synth. Commun. 2017, 47, 1577–1581. [Google Scholar] [CrossRef]
- Hou, J.T.; Zhang, Q.F.; Xu, B.Y.; Lu, Q.S.; Liu, Q.; Yu, X.Q. A novel BINOL-based cyclophane via click chemistry: Synthesis and its applications for sensing silver ions. Tetrahedron Lett. 2011, 52, 4927–4930. [Google Scholar] [CrossRef]
- Zhong, H.; Deng, J.P. Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications. Polym. Rev. 2022, 62, 826–859. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, J.; Yoon, J.Y. Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors. Chem. Rev. 2014, 114, 4918–4959. [Google Scholar] [CrossRef]
- Rashid, M.; Peter, J.C.; Karl, J.W. Low Molecular Weight Fluorescent probes for the detection of organophosphates. J. Lumin. 2021, 235, 118053. [Google Scholar]
- Shen, J.; Okamoto, Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chem. Rev. 2016, 116, 1094–1138. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.L.; Song, F.Y.; Wang, L.; Wei, G.; Cheng, Y.X.; Zhu, C.J. In Situ Generated 1:1 Zn(II)-Containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-Protected Alanine. Macromolecules 2012, 45, 7835–7842. [Google Scholar] [CrossRef]
- Li, P.P.; Feng, J.; Pan, K.; Deng, J.P. Preparation and Chirality Investigation of Electrospun Nanofibers from Optically Active Helical Substituted Polyacetylenes. Macromolecules 2020, 53, 602–608. [Google Scholar] [CrossRef]
- Hartmuth, C.K.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar]
- Patricia, L.G.; Matyjaszewski, K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev. 2010, 39, 1338–1354. [Google Scholar]
- Binder, W.H.; Sachsenhofer, R. Click Chemistry in Polymer and Materials Science. Macromol. Rapid Commun. 2007, 28, 15–54. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Luo, Z.Y.; Yin, M.J.; Wang, N.X.; An, Q.F. A comprehensive study on phase inversion behavior of a novel polysulfate membrane for high-performance ultrafiltration applications. J. Membr. Sci. 2020, 610, 118404. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.C.; Ma, L.F.; Xu, X.; Zhang, P. Explorations of complex thermally induced phase separation (C-TIPS) method for manufacturing novel diphenyl ether polysulfate flat microporous membranes. J. Membr. Sci. 2022, 659, 120739. [Google Scholar] [CrossRef]
- Tan, X.; Rodrigue, D. A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride). Polymers 2019, 11, 1160. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.S.; Li, L.; Kim, B.M. SuFEx-Click Approach for the Synthesis of Soluble Polymer-Bound MacMillan Catalysts for the Asymmetric Diels–Alder Reaction. Catalysts 2021, 11, 1044. [Google Scholar] [CrossRef]
- Oakdale, J.S.; Kwisnek, L.; Fokin, V.V. Selective and Orthogonal Post-Polymerization Modification using Sulfur(VI) Fluoride Exchange (SuFEx) and Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Reactions. Macromolecules 2016, 49, 4473–4479. [Google Scholar] [CrossRef]
- Meng, F.D.; Li, F.; Yang, L.; Wang, Y.X.; Quan, Y.W.; Cheng, Y.X. The amplified circularly polarized luminescence emission response of chiral 1,1′-binaphthol-based polymers via Zn(II)-coordination fluorescence enhancement. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1282–1288. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, X.J.; Yang, L.; Sun, W.Y.; Zhu, C.J.; Cheng, Y.X. Amplification effect of circularly polarized luminescence induced from binaphthyl-based zinc(II) chiral coordination polymers. Mater. Chem. Front. 2018, 2, 554–558. [Google Scholar] [CrossRef]
- Hesemann, P.; Moreau, J.J.E.; Cheng, Y.X. Hybrid silarylene polysiloxanes incorporating chiral BINOL entities: A new class of polymer with main chain chirality. Tetrahedron Asymmetry 2002, 13, 607–613. [Google Scholar]
- Shannon, T.; Hui, M.T.; Carol, H. A chiral binaphthyl-based coordination polymer as an enantioselective fluorescence sensor. Chem. Commun. 2022, 58, 4512–4515. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Liu, W.; Tian, L.; Cao, W.; Li, X.; Guo, J.; Cui, J.; Yang, B. Chiral Binaphthol Fluorescent Materials Based on a Novel Click Reaction. Symmetry 2023, 15, 629. https://doi.org/10.3390/sym15030629
Li F, Liu W, Tian L, Cao W, Li X, Guo J, Cui J, Yang B. Chiral Binaphthol Fluorescent Materials Based on a Novel Click Reaction. Symmetry. 2023; 15(3):629. https://doi.org/10.3390/sym15030629
Chicago/Turabian StyleLi, Fuchong, Wei Liu, Li Tian, Wei Cao, Xu Li, Junhong Guo, Jinfeng Cui, and Baoping Yang. 2023. "Chiral Binaphthol Fluorescent Materials Based on a Novel Click Reaction" Symmetry 15, no. 3: 629. https://doi.org/10.3390/sym15030629
APA StyleLi, F., Liu, W., Tian, L., Cao, W., Li, X., Guo, J., Cui, J., & Yang, B. (2023). Chiral Binaphthol Fluorescent Materials Based on a Novel Click Reaction. Symmetry, 15(3), 629. https://doi.org/10.3390/sym15030629