Construction of Novel Bright-Dark Solitons and Breather Waves of Unstable Nonlinear Schrödinger Equations with Applications
Abstract
:1. Introduction
2. Proposed Improved Auxiliary Equation Method
- Step 1:
- Step 2:
- Assume that Equation (5) has the following solution as
- Step 3:
- Step 4:
3. Implementation of the Improved Auxiliary Equation Method on UNLSE
4. Implementation of the Improved Auxiliary Equation Method on mUNLSE
5. Physical Interpretation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitschke, F.; Mahnke, C.; Hause, A. Soliton Content of Fiber-Optic Light Pulses. Appl. Sci. 2017, 7, 635. [Google Scholar] [CrossRef]
- Chabchoub, A.; Kibler, B.; Finot, C.; Millot, G.; Onorato, M.; Dudley, J.M.; Babanin, A.V. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface. Ann. Phys. 2015, 361, 490–500. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Wazwaz, A.-M. New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. Eur. Phys. J. Plus 2020, 135, 870. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers. Superlattices Microstruct. 2018, 113, 419–429. [Google Scholar] [CrossRef]
- Akbar, M.A.; Ali, N.; Wazwaz, A.M. Closed form traveling wave solutions of non-linear fractional evolution equations through the modified simple equation method. Therm. Sci. 2018, 22, 341352. [Google Scholar]
- Yin, H.M.; Pan, Q.; Chow, K.W. Doubly periodic solutions and breathers of the Hirota equation: Recurrence, cascading mechanism and spectral analysis. Nonlinear Dyn. 2022, 110, 3751–3768. [Google Scholar] [CrossRef]
- Yin, H.M.; Chow, K.W. Breathers, cascading instabilities and Fermi-Pasta-Ulam-Tsingou recurrence of the derivative nonlinear Schrödinger equation: Effects of ‘self-steepening’ nonlinearity. Phys. D 2021, 428, 133033. [Google Scholar] [CrossRef]
- Frassu, S.; Galván, R.R.; Viglialoro, G. Uniform in time L∞-estimates for an attraction-repulsion chemotaxis model with double saturation. Discrete Contin. Dyn. Syst. Ser. B 2023, 3, 1886–1904. [Google Scholar] [CrossRef]
- Frassu, S.; Li, T.; Viglialoro, G. Improvements and generalizations of results concerning attraction-repulsion chemotaxis models. Math. Methods Appl. Sci. 2022, 45, 11067–11078. [Google Scholar] [CrossRef]
- Dvornikov, M. Stable Langmuir solitons in plasma with diatomic ions. Nonlin. Process. Geophys. 2013, 20, 581–588. [Google Scholar] [CrossRef] [Green Version]
- He, J.S.; Charalampidis, E.G.; Kevrekidis, P.G.; Frantzeskakis, D.J. Rogue waves in nonlinear Schrödinger models with variable coefficients: Application to Bose–Einstein condensates. Phys. Lett. A 2014, 378, 577–583. [Google Scholar] [CrossRef]
- Bona, J.L.; Saut, J.-C. Dispersive Blow-Up II. Schrödinger-Type Equations, Optical and Oceanic Rogue Waves. Chin. Ann. Math. Ser. B 2010, 31, 793–818. [Google Scholar] [CrossRef]
- Grinevich, P.G.; Santini, P.M. The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes. Phys. Lett. A 2018, 382, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Chabchoub, A.; Grimshaw, R.H.J. The Hydrodynamic Nonlinear Schrödinger Equation: Space and Time. Fluids 2016, 1, 23. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, D.; Kharbanda, H. Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2 + 1)-dimensional KP-BBM equation. Pramana 2021, 95, 33. [Google Scholar] [CrossRef]
- Yin, H.M.; Pan, Q.; Chow, K.W. Four-wave mixing and coherently coupled Schrödinger equations: Cascading processes and Fermi–Pasta–Ulam–Tsingou recurrence. Chaos 2021, 31, 083117. [Google Scholar] [CrossRef]
- Solli, D.R.; Ropers, C.; Koonath, P.; Jalali, B. Optical rogue waves. Nature 2007, 450, 1054–1057. [Google Scholar] [CrossRef]
- Viotti, C.; Dutykh, D.; Dudley, J.M.; Dias, F. Emergence of coherent wave groups in deep-water random sea. Phys. Rev. E 2013, 87, 063001. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, D.; Kumar, A. Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation. Chaos Solitons Fractals 2021, 142, 110507. [Google Scholar] [CrossRef]
- Khatun, M.A.; Arefin, M.A.; Uddin, M.H.; Baleanu, D.; Akbar, M.A.; Inc, M. Explicit wave phenomena to the couple type fractional order nonlinear evolution equations. Results Phys. 2021, 28, 104597. [Google Scholar] [CrossRef]
- Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J.M. The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 2010, 6, 790–795. [Google Scholar] [CrossRef]
- Frisquet, B.; Kibler, B.; Millot, G. Collision of Akhmediev Breathers in Nonlinear Fiber Optics. Phys. Rev. X 2013, 3, 041032. [Google Scholar] [CrossRef] [Green Version]
- Chabchoub, A.; Hoffmann, N.; Onorato, M.; Akhmediev, N. Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves. Phys. Rev. X 2012, 2, 011015. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.E.; Ostrovsky, L.A. Modulation instability: The beginning. Phys. D 2009, 238, 540–548. [Google Scholar] [CrossRef]
- Hosseini, K.; Mirzazadeh, M.; Baleanu, D.; Salahshour, S.; Akinyemi, L. Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect. Opt. Quantum Electron. 2022, 54, 177. [Google Scholar] [CrossRef]
- Habib, M.A.; Ali, H.M.S.; Miah, M.M.; Akbar, M.A. The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs. AIMS Math. 2019, 4, 896–909. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D. Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications. Opt. Quantum Electron. 2017, 49, 421. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Arshad, M. Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 2017, 140, 136–144. [Google Scholar] [CrossRef]
- Elboree, M.K. The Jacobi elliptic function method and its application for two component BKP hieracy equations. Comput. Math. Appl. 2011, 62, 4402–4414. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Akbar, M.A.; Islam, M. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations. SpringerPlus 2014, 3, 724. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.; Seadawy, A.R.; Lu, D. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications. Superlattices Microstruct. 2017, 112, 422–434. [Google Scholar] [CrossRef]
- Biswa, A.; Arshed, S. Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity. Optik 2018, 172, 847–850. [Google Scholar] [CrossRef]
- Gaber, A.A.; Aljohani, A.F.; Ebaid, A.; Machado, J.T. The generalized Kudryashov method for nonlinear space–time fractional partial differential equations of Burgers type. Nonlinear Dyn. 2019, 95, 361–368. [Google Scholar] [CrossRef]
- Miah, M.M.; Ali, H.M.S.; Akbar, M.A.; Wazwaz, A.M. Some applications of the (G′/G,1/G)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 2017, 132, 252. [Google Scholar] [CrossRef]
- Zhang, R.-F.; Li, M.-C. Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 2022, 108, 521–531. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D.; Khater, M.M.A. Bifurcations of traveling wave solutions for Dodd-Bullough-Mikhailov equation and coupled Higgs equation and their applications. Chin. J. Phys. 2017, 55, 1310–1318. [Google Scholar] [CrossRef]
- Yasar, E.; Yildirim, Y.; Yasar, E. New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method. Results Phys. 2018, 9, 1666–1672. [Google Scholar] [CrossRef]
- Hosseini, M.M.; Ghaneai, H.; Mohyud-din, S.T.; Usman, M. Tri-prong scheme for regularized long wave equation. J. Assoc. Arab Univ. Basic Appl. Sci. 2016, 20, 68–77. [Google Scholar] [CrossRef]
- Yin, H.M.; Pan, Q.; Chow, K.W. The Fermi–Pasta–Ulam–Tsingou recurrence for discrete systems: Cascading mechanism and machine learning for the Ablowitz-Ladik equation. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106664. [Google Scholar] [CrossRef]
- Yang, Y.; Suzuki, T.; Cheng, X. Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Appl. Math. Lett. 2020, 99, 105998. [Google Scholar] [CrossRef]
- Fang, J.; Wu, B.; Liu, W. An explicit spectral collocation method for the linearized Korteweg–de Vries equation on unbounded domain. Appl. Numer. Math. 2018, 126, 34–52. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, D.S. A generalized extended rational expansion method and its application to (1 + 1)-dimensional dispersive long wave equation. Appl. Math. Comput. 2009, 212, 296–304. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Chen, Y. Binary Bell Polynomials, Bilinear Approach to Exact Periodic Wave Solutions of (2 + 1)-Dimensional Nonlinear Evolution Equations. Commun. Theor. Phys. 2011, 56, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Rizea, M. Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 2010, 48, 55–65. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alurrfi, K.A.E. New extended auxiliary equation method and its applications to nonlinear Schrödinger-type equations. Optik 2016, 127, 9131–9151. [Google Scholar] [CrossRef]
- Sarwar, A.; Gang, T.; Arshad, M.; Ahmed, I. Construction of brightdark solitary waves and elliptic function solutions of space-time fractional partial differential equations and their applications. Phys. Scr. 2020, 95, 045227. [Google Scholar] [CrossRef]
- Nasreen, N.; Lu, D.; Arshad, M. Optical soliton solutions of nonlinear Schrödinger equation with second order spatiotemporal dispersion and its modulation instability. Optik 2018, 161, 221–229. [Google Scholar] [CrossRef]
- Kumar, S.; Ma, W.-X.; Kumar, A. Lie symmetries, optimal system and group-invariant solutions of the (3 + 1)-dimensional generalized KP equation. Chin. J. Phys. 2021, 69, 1–23. [Google Scholar] [CrossRef]
- Hafiz Uddin, M.; Zaman, U.H.M.; Arefin, M.A.; Akbar, M.A. Nonlinear dispersive wave propagation pattern in optical fiber system. Chaos Solitons Fractals 2022, 164, 112596. [Google Scholar] [CrossRef]
- Pedlosky, J. Finite-amplitude baroclinic waves. J. Atmos. Sci. 1970, 27, 15–30. [Google Scholar] [CrossRef]
- Pawlik, M.; Rowlands, G. The propagation of solitary waves in piezoelectric semiconductors. J. Phys. C Solid State Phys. 1975, 8, 1189–1204. [Google Scholar] [CrossRef]
- Wadati, M.M.; Segur, H.; Ablowitz, M.J. A new Hamiltonian amplitude equation governing modulated wave instabilities. J. Phys. Soc. Jpn. 1992, 61, 1187–1193. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Optical soliton solutions of unstable nonlinear Schrödinger dynamical equation and stability analysis with applications. Optik 2018, 157, 597–605. [Google Scholar] [CrossRef]
- Arbabi, S.; Najafi, M. Exact solitary wave solutions of the complex nonlinear Schrödinger equations. Optik 2016, 127, 4682–4688. [Google Scholar] [CrossRef]
- Yue, L.; Lu, D.; Arshad, M.; Xu, X. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations and their applications. Optik 2021, 226, 165386. [Google Scholar]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Modulation instability analysis of modify unstable nonlinear Schrödinger dynamical equation and its optical soliton solutions. Results Phys. 2017, 7, 4153–4161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, A.; Arshad, M.; Farman, M.; Akgül, A.; Ahmed, I.; Bayram, M.; Rezapour, S.; De la Sen, M. Construction of Novel Bright-Dark Solitons and Breather Waves of Unstable Nonlinear Schrödinger Equations with Applications. Symmetry 2023, 15, 99. https://doi.org/10.3390/sym15010099
Sarwar A, Arshad M, Farman M, Akgül A, Ahmed I, Bayram M, Rezapour S, De la Sen M. Construction of Novel Bright-Dark Solitons and Breather Waves of Unstable Nonlinear Schrödinger Equations with Applications. Symmetry. 2023; 15(1):99. https://doi.org/10.3390/sym15010099
Chicago/Turabian StyleSarwar, Ambreen, Muhammad Arshad, Muhammad Farman, Ali Akgül, Iftikhar Ahmed, Mustafa Bayram, Shahram Rezapour, and Manuel De la Sen. 2023. "Construction of Novel Bright-Dark Solitons and Breather Waves of Unstable Nonlinear Schrödinger Equations with Applications" Symmetry 15, no. 1: 99. https://doi.org/10.3390/sym15010099