Existence and Uniqueness Theorem for Uncertain Wave Equation
Abstract
:1. Introduction
2. Preliminaries
- (i)
- Almost all of its sample paths are Lipschitz continuous and ;
- (ii)
- has independent increments and is also stationary;
- (iii)
- The expected value and variance of every increment are 0 and , and uncertainty distribution of isthen is called the Liu process.
3. Existence and Uniqueness
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B. Uncertainty Theory, 2nd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Liu, B. Theory and Practice of Uncertain Programming, 2nd ed.; Springer: Berlin, Germany, 2009. [Google Scholar]
- Gao, R.; Zhang, Z.M. Analysis of green supply chain considering green degree and sales effort with uncertain demand. J. Intell. Syst. 2020, 38, 4247–4264. [Google Scholar] [CrossRef]
- Gao, R.; Yao, K. Importance index of components in uncertain random systems. Knowl.-Based Syst. 2016, 109, 208–217. [Google Scholar] [CrossRef]
- Ahmadzade, H.; Gao, R. Covariance of uncertain random variables and its application to portfolio optimization. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 2613–2624. [Google Scholar] [CrossRef]
- Chen, L.; Gao, R.; Li, Z.Y.; Bian, Y.X. Elliptic entropy of uncertain random variables with application to portfolio selection. Soft Comput. 2021, 25, 1925–1939. [Google Scholar] [CrossRef]
- Ning, Y.F.; Su, T.Y. A multilevel approach for modelling vehicle routing problem with uncertain travelling time. J. Intell. Manuf. 2017, 28, 683–688. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ralescu, D.A. Expected loss of uncertain random systems. Soft Comput. 2018, 22, 5573–5578. [Google Scholar] [CrossRef]
- Liu, B. Fuzzy process, hybrid process and uncertain process. J. Uncertain Syst. 2008, 2, 3–16. [Google Scholar]
- Liu, B. Some research problems in uncertainty theory. J. Uncertain Syst. 2009, 3, 3–10. [Google Scholar]
- Chen, X.W.; Liu, B. Existence and uniqueness theorem for uncertain differential equations. Fuzzy Optim. Decis. Mak. 2010, 9, 69–81. [Google Scholar] [CrossRef]
- Sheng, Y.H.; Wang, C.G. Stability in the p-th moment for uncertain differential equation. J. Intell. Fuzzy Syst. 2014, 26, 1263–1271. [Google Scholar] [CrossRef]
- Yao, K.; Ke, H.; Sheng, Y.H. Stability in mean for uncertain differential equation. Fuzzy Optim. Decis. Mak. 2015, 14, 365–379. [Google Scholar] [CrossRef]
- Yao, K.; Chen, X.W. A numerical method for solving uncertain differential equations. J. Intell. Fuzzy Syst. 2013, 25, 825–832. [Google Scholar] [CrossRef]
- Gao, R. Milne method for solving uncertain differential equations. Appl. Math. Comput. 2016, 74, 774–785. [Google Scholar] [CrossRef]
- Gao, R.; Wu, W.; Lang, C.; Lang, L.Y. Geometric Asian barrier option pricing formulas of uncertain stock model. Chaos Solitons Fractals 2020, 140, 110178. [Google Scholar] [CrossRef]
- Zhu, Y.G. Uncertain optimal control with application to a portfolio selection model. Cybern. Syst. 2010, 41, 535–547. [Google Scholar] [CrossRef]
- Walsh, J.B. An introduction to stochastic partial differential equations. In E´cole d’E´te´ de Probabilite´s de Saint Flour XIV. Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1984; Volume 1180, pp. 265–439. [Google Scholar]
- Caban˜a, E.M. The vibrating string forced by white noise. Z. Wahrscheinlichkeitsthrorie Verwandte Geb. 1970, 15, 111–130. [Google Scholar] [CrossRef]
- Orsingher, E. Randomly forced vibrations of a string. Annales de l’Institut Henri Poincare´-Sect. B 1982, 18, 367–394. [Google Scholar]
- Marcus, M.; Mizel, V.J. Stochastic hyperbolic systems and the wave equation. Stoch. Stoch. Rep. 1991, 36, 225–244. [Google Scholar] [CrossRef]
- Czapor, S.R.; Mclenaghan, R.G.; Sasse, F.D. Complete solution of Hadamard’s problem for the scalar wave equation on Petrov type III spacetimes. Ann. l’Institut Henri Poincare´ 1999, 71, 595–620. [Google Scholar]
- Yang, X.F.; Yao, K. Uncertain partial differential equation with application to heat conduction. Fuzzy Optim. Decis. Mak. 2017, 16, 379–403. [Google Scholar] [CrossRef]
- Gao, R.; Ralescu, A.D. Uncertain wave equation for string vibration. Trans. Fuzzy Syst. 2019, 27, 1323–1331. [Google Scholar] [CrossRef]
- Liu, B. Uncertain distribution and independence of uncertain processes. Fuzzy Optim. Decis. Mak. 2014, 13, 259–271. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R. Existence and Uniqueness Theorem for Uncertain Wave Equation. Symmetry 2022, 14, 191. https://doi.org/10.3390/sym14020191
Gao R. Existence and Uniqueness Theorem for Uncertain Wave Equation. Symmetry. 2022; 14(2):191. https://doi.org/10.3390/sym14020191
Chicago/Turabian StyleGao, Rong. 2022. "Existence and Uniqueness Theorem for Uncertain Wave Equation" Symmetry 14, no. 2: 191. https://doi.org/10.3390/sym14020191
APA StyleGao, R. (2022). Existence and Uniqueness Theorem for Uncertain Wave Equation. Symmetry, 14(2), 191. https://doi.org/10.3390/sym14020191