Asymmetry Evolvement and Controllability of a Symmetric Hyperchaotic Map
Abstract
:1. Introduction
2. Symmetric Hyperchaotic Map
2.1. Symmetric Hyperchaotic Map Model
2.2. Fixed Point Analysis
3. Analysis of Bifurcation Behavior
4. Multistability Analysis
5. Polarity Control of Symmetrical Attractors
6. Offset Boosting
7. Hardware Circuit Implementation
8. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, A.; Xiao, M. Optical multistability in three-level atoms inside an optical ring cavity. Phys. Rev. Lett. 2003, 91, 143904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaros, P.; Perlikowski, P.; Kapitaniak, T. Synchronization and multistability in the ring of modified Rössler oscillators. Eur. Phys. J. Spec. Top. 2015, 224, 1541–1552. [Google Scholar] [CrossRef]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Njitacke, Z.T.; Kengne, J.; Fotsin, H.B.; Negou, A.N.; Tchiotsop, D. Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based jerk circuit. Chaos Solitons Fractals 2016, 91, 180–197. [Google Scholar] [CrossRef]
- Kengne, J.; Njitacke, Z.T.; Fotsin, H.B. Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 2016, 83, 751–765. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, M.; Lin, Y.; Bao, B.C. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 2016, 83, 186–200. [Google Scholar] [CrossRef]
- Li, C.B.; Sprott, J.C.; Hu, W.; Xu, Y. Infinite multistability in a Self-reproducing Chaotic System. Int. J. Bifurc. Chaos 2017, 27, 1750160. [Google Scholar] [CrossRef]
- Sprott, J.C.; Jafari, S.; Khalaf, A.; Kapitaniak, T. Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur. Phys. J. Spec. Top. 2017, 226, 1979–1985. [Google Scholar] [CrossRef] [Green Version]
- Bao, B.C.; Li, H.Z.; Zhu, L.; Zhang, X.; Chen, M. Initial-switched boosting bifurcations in 2D hyperchaotic map. Chaos 2020, 30, 033107. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.Y.; Wang, N.; Zhu, L.; Chen, M.; Bao, B.C. Initials-boosted Coexisting chaos in a 2D sine map and its hardware implementation. IEEE Trans. Ind. Inform. 2020, 17, 1132–1140. [Google Scholar] [CrossRef]
- Zhang, L.P.; Liu, Y.; Wei, Z.C.; Jiang, H.B.; Bi, Q.S. A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors. Chin. Phys. B 2020, 29, 060501. [Google Scholar] [CrossRef]
- Lai, Q.; Akgul, A.; Zhao, X.W.; Pei, H.Q. Various Types of Coexisting Attractors in a New 4D Autonomous Chaotic System. Int. J. Bifurc. Chaos 2017, 27, 1750142. [Google Scholar] [CrossRef]
- Lai, Q. A Unified Chaotic System with Various Coexisting Attractors. Int. J. Bifurc. Chaos 2021, 31, 2150013. [Google Scholar] [CrossRef]
- Li, C.B.; Sprott, J.C. Variable-boostable chaotic flows. Opt. Int. J. Light Electron Opt. 2016, 127, 10389–10398. [Google Scholar] [CrossRef]
- Sun, W.J.; Zhao, X.T.; Fang, J.; Wang, Y.F. Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn. 2018, 94, 2879–2887. [Google Scholar] [CrossRef]
- Lai, Q.; Chen, C.Y.; Zhao, X.W.; Kengne, J.; Volos, C. Constructing Chaotic System with Multiple Coexisting Attractors. IEEE Access 2019, 21, 24051–24056. [Google Scholar] [CrossRef]
- Li, C.B.; Lu, T.A.; Chen, G.R.; Xing, H.Y. Doubling the coexisting attractors. Chaos 2019, 29, 051102. [Google Scholar] [CrossRef] [PubMed]
- Li, C.B.; Xu, Y.J.; Chen, G.R.; Liu, Y.J.; Zheng, J.C. Conditional symmetry: Bond for attractor growing. Nonlinear Dyn. 2019, 95, 1245–1256. [Google Scholar] [CrossRef]
- Yang, Y.G.; Guan, B.W.; Li, J.; Li, D.; Zhou, Y.H.; Shi, W.M. Image compression-encryption scheme based on fractional order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding. Opt. Laser Technol. 2019, 119, 105661. [Google Scholar] [CrossRef]
- Yang, F.F.; Mou, J.; Liu, J.; Ma, C.G.; Yan, H.Z. Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process. 2020, 169, 107373. [Google Scholar] [CrossRef]
- Ismail, S.M.; Said, L.A.; Radwan, A.G.; Madian, A.H.; Abu-Elyazeed, M.F. A Novel Image Encryption System Merging Fractional-Order Edge Detection and Generalized Chaotic Maps. Signal Process. 2019, 167, 107280. [Google Scholar] [CrossRef]
- Chen, C.; Sun, K.H.; He, S.B. An improved image encryption algorithm with finite computing precision. Signal Process. 2020, 168, 107340. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, M.J.; Wang, C.H.; Xu, C. Image segmentation encryption algorithm with chaotic sequence generation participated by cipher and multi-feedback loops. Multimed. Tools Appl. 2021, 80, 13821–13840. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, C.H. A Novel Hyperchaotic Image Encryption System Based on Particle Swarm Optimization Algorithm and Cellular Automata. Secur. Commun. Netw. 2021, 5, 1–15. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, R.; Liu, A. A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 2014, 100, 13–23. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Nazarimehr, F. Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224, 1469–1476. [Google Scholar] [CrossRef]
- Bao, B.C.; Li, Q.D.; Wang, N.; Xu, Q. Multistability in Chua’s circuit with two stable node-foci. Chaos 2016, 26, 043111. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Chen, S.M. Research on a new 3D autonomous chaotic system with coexisting attractors. Opt. Int. J. Light Electron Opt. 2017, 127, 3000–3004. [Google Scholar] [CrossRef]
- Chen, M.; Xu, Q.; Lin, Y.; Bao, B.C. Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn. 2017, 87, 789–802. [Google Scholar] [CrossRef]
- Li, C.B.; Sprott, J.C.; Mei, Y. An infinite 2-D lattice of strange attractors. Nonlinear Dyn. 2017, 89, 2629–2639. [Google Scholar] [CrossRef]
Attractor Type | |||
---|---|---|---|
0.76 | 0, −0.3653 | 0 | Quasi-period |
1.300 | 0.0847, −0.6667 | 1.127 | Chaos |
1.852 | −0.0257, −0.4089 | 0 | Periodic points |
3.110 | 0.2121, 0.0985 | 2 | Hyperchaos |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, S.; Li, C.; Jiang, H.; Zhao, Y.; Wang, Y. Asymmetry Evolvement and Controllability of a Symmetric Hyperchaotic Map. Symmetry 2021, 13, 1039. https://doi.org/10.3390/sym13061039
Kong S, Li C, Jiang H, Zhao Y, Wang Y. Asymmetry Evolvement and Controllability of a Symmetric Hyperchaotic Map. Symmetry. 2021; 13(6):1039. https://doi.org/10.3390/sym13061039
Chicago/Turabian StyleKong, Sixiao, Chunbiao Li, Haibo Jiang, Yibo Zhao, and Yanling Wang. 2021. "Asymmetry Evolvement and Controllability of a Symmetric Hyperchaotic Map" Symmetry 13, no. 6: 1039. https://doi.org/10.3390/sym13061039
APA StyleKong, S., Li, C., Jiang, H., Zhao, Y., & Wang, Y. (2021). Asymmetry Evolvement and Controllability of a Symmetric Hyperchaotic Map. Symmetry, 13(6), 1039. https://doi.org/10.3390/sym13061039