Taming Tail Risk: Regularized Multiple β Worst-Case CVaR Portfolio
Abstract
:1. Introduction
2. Related Work
3. Preliminary
- Subadditivity: for all random losses X and Y,
- Positive homogeneity: for positive constant
- Monotonicity: if for each outcome, then
- Translation invariance: for constant
4. Regularized Multiple β WCVaR Portfolio Optimization
- 1.
- If is the optimal value for Problem 4, then is the optimal value of Problem 5.
- 2.
- If is the optimal value for Problem 5, then is the optimal value for Problem 4.
Algorithm 1 Regularized Multiple β WCVaR Portfolio Optimization. |
Input:K probability levels , Coefficient of the regularization term , Number of blocks of a partition and Return matrix Output: Set of optimal weights
|
5. Experiment
5.1. Dataset
5.2. Experimental Settings
- “EW” stands for equally-weighted (EW) portfolio [40].
- “MV” stands for minimum-variance portfolio. We use the latest 10 years (120 months) to compute for the sample covariance matrix [41].
- “DRP” stands for the doubly regularized minimum-variance portfolio [18]. We use the latest 10 years (120 months) to compute for the sample covariance matrix. We set combinations of two coefficients for regularization terms to = and = .
- “EGO” stands for the Kelly growth optimal portfolio with ensemble learning [42]. We set (number of resamples) = 50, (size of each resample) = 5, (number of periods of return data) = 120, (number of resampled subsets) = 50, (size of each subset) = , where n is number of assets (i.e., ).
- “RMCVaR” stands for the regularized multiple CVaR portfolio [16]. We set K = 5 () as five patterns of = {0.95, 0.96, 0.97, 0.98, 0.99} to calculate . We also set Q (number of sampling periods of return data) as 10 years (120 months). For the coefficient of the regularization term, we implemented four patterns of = .
- “WCVaR” stands for minimum WCVaR portfolio with (Problem 2). We implemented five patterns of = {0.95, 0.96, 0.97, 0.98, 0.99}. We used the latest 50 years’ ( months) data and split them randomly into divisions.
- “AWCVaR” stands for the average portfolio calculated by the simple average of minimum WCVaR portfolio of different = {0.95, 0.96, 0.97, 0.98, 0.99} at each month.
- “RM-WCVaR” stands for our proposed portfolio. We set K = 5 () as five patterns of = {0.95, 0.96, 0.97, 0.98, 0.99} to calculate . We use the latest 50 years’ ( months) data and split them randomly into divisions. For the coefficient of the regularization term, we implement four patterns of = . The RM-WCVaR Portfolio presented in Algorithm 1 is straightforward in terms of implementation.
5.3. Performance Measures
5.4. Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Morgan, J.; Spencer, M. Riskmetrics Technical Document; Morgan Guaranty Trust Company of New York: New York, NY, USA, 1996. [Google Scholar]
- Herring, R.J. The Basel 2 approach to bank operational risk: Regulation on the wrong track. J. Risk Financ. 2002, 4, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent measures of risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Wang, H.; Huang, M. Formulation of theNon-Parametric Value at Risk Portfolio Selection Problem Considering Symmetry. Symmetry 2020, 12, 1639. [Google Scholar] [CrossRef]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools—Revised Edition; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Pflug, G.C. Some remarks on the value-at-risk and the conditional value-at-risk. In Probabilistic Constrained Optimization; Springer: Berlin/Heidelberg, Germany, 2000; pp. 272–281. [Google Scholar]
- Rockafellar, R.T.; Uryasev, S. Optimization of conditional value-at-risk. J. Risk 2000, 2, 21–42. [Google Scholar] [CrossRef] [Green Version]
- Rockafellar, R.T.; Uryasev, S. Conditional value-at-risk for general loss distributions. J. Bank. Financ. 2002, 26, 1443–1471. [Google Scholar] [CrossRef]
- Goel, A.; Sharma, A.; Mehra, A. Index tracking and enhanced indexing using mixed conditional value-at-risk. J. Comput. Appl. Math. 2018, 335, 361–380. [Google Scholar] [CrossRef]
- Karmakar, M.; Paul, S. Intraday portfolio risk management using VaR and CVaR: A CGARCH-EVT-Copula approach. Int. J. Forecast. 2019, 35, 699–709. [Google Scholar] [CrossRef]
- Guastaroba, G.; Mansini, R.; Ogryczak, W.; Speranza, M.G. Enhanced index tracking with CVaR-based ratio measures. Ann. Oper. Res. 2020, 292, 883–931. [Google Scholar] [CrossRef] [Green Version]
- Ghaoui, L.E.; Oks, M.; Oustry, F. Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Oper. Res. 2003, 51, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Čerbáková, J. Worst-case var and cvar. In Operations Research Proceedings 2005; Springer: Berlin/Heidelberg, Germany, 2006; pp. 817–822. [Google Scholar]
- Zhu, S.; Fukushima, M. Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 2009, 57, 1155–1168. [Google Scholar] [CrossRef]
- Nakagawa, K.; Noma, S.; Abe, M. RM-CVaR: Regularized Multiple β-CVaR Portfolio. IJCAI 2020, 4562–4568. [Google Scholar] [CrossRef]
- Michaud, R.O. The Markowitz optimization enigma: Is ‘optimized’optimal? Financ. Anal. J. 1989, 45, 31–42. [Google Scholar] [CrossRef]
- Shen, W.; Wang, J.; Ma, S. Doubly regularized portfolio with risk minimization. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014. [Google Scholar]
- Mansini, R.; Ogryczak, W.; Speranza, M.G. Portfolio Optimization with Transaction Costs. In Linear and Mixed Integer Programming for Portfolio Optimization; Springer: Berlin/Heidelberg, Germany, 2015; pp. 47–62. [Google Scholar]
- DeMiguel, V.; Garlappi, L.; Nogales, F.J.; Uppal, R. A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Manag. Sci. 2009, 55, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.C. On Estimating the Expected Return on the Market: An Exploratory Investigation; Technical report; National Bureau of Economic Research: Cambridge, MA, USA, 1980. [Google Scholar]
- Gotoh, J.y.; Takeda, A. On the role of norm constraints in portfolio selection. Comput. Manag. Sci. 2011, 8, 323. [Google Scholar] [CrossRef]
- Tütüncü, R.H.; Koenig, M. Robust asset allocation. Ann. Oper. Res. 2004, 132, 157–187. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Han, F.; Liu, H.; Caffo, B. Robust portfolio optimization. Adv. Neural Inf. Process. Syst. 2015, 28, 46–54. [Google Scholar]
- Del Brio, E.B.; Mora-Valencia, A.; Perote, J. Expected shortfall assessment in commodity (L) ETF portfolios with semi-nonparametric specifications. Eur. J. Financ. 2019, 25, 1746–1764. [Google Scholar] [CrossRef]
- Molina-Muñoz, E.; Mora-Valencia, A.; Perote, J. Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures. Int. J. Financ. Econ. 2020. [Google Scholar] [CrossRef]
- Clarke, R.; De Silva, H.; Thorley, S. Minimum-variance portfolio composition. J. Portf. Manag. 2011, 37, 31–45. [Google Scholar] [CrossRef]
- Qian, E. Risk Parity Portfolios: Efficient Portfolios Through true Diversification. 2005. Available online: https://www.panagora.com/assets/PanAgora-Risk-Parity-Portfolios-Efficient-Portfolios-Through-True-Diversification.pdf (accessed on 12 March 2021).
- Maillard, S.; Roncalli, T.; Teïletche, J. The properties of equally weighted risk contribution portfolios. J. Portf. Manag. 2010, 36, 60–70. [Google Scholar] [CrossRef]
- Choueifaty, Y.; Coignard, Y. Toward maximum diversification. J. Portf. Manag. 2008, 35, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Imamura, M.; Yoshida, K. Risk-based portfolios with large dynamic covariance matrices. Int. J. Financ. Stud. 2018, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Du Plessis, H.; van Rensburg, P. Risk-based portfolio sensitivity to covariance estimation. Invest Anal. J. 2020, 49, 243–268. [Google Scholar] [CrossRef]
- Bodnar, T.; Schmid, W.; Zabolotskyy, T. Minimum VaR and Minimum CVaR optimal portfolios: Estimators, confidence regions, and tests. Stat. Risk Model. 2012, 29, 281–314. [Google Scholar] [CrossRef]
- Meucci, A. Managing diversification. Risk 2009, 2009, 74–79. [Google Scholar]
- Uchiyama, Y.; Kadoya, T.; Nakagawa, K. Complex valued risk diversification. Entropy 2019, 21, 119. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Uchiyama, Y. GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio. Mathematics 2020, 8, 1990. [Google Scholar] [CrossRef]
- Poddig, T.; Unger, A. On the robustness of risk-based asset allocations. Financ. Mark. Portf. Manag. 2012, 26, 369–401. [Google Scholar] [CrossRef]
- Zou, H.; Yuan, M. Regularized simultaneous model selection in multiple quantiles regression. Comput. Stat. Data Anal. 2008, 52, 5296–5304. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. The cross-section of expected stock returns. J. Financ. 1992, 47, 427–465. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Uppal, R. Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 2007, 22, 1915–1953. [Google Scholar] [CrossRef] [Green Version]
- Clarke, R.G.; De Silva, H.; Thorley, S. Minimum-variance portfolios in the US equity market. J. Portf. Manag. 2006, 33, 10–24. [Google Scholar] [CrossRef]
- Shen, W.; Wang, B.; Pu, J.; Wang, J. The Kelly Growth Optimal Portfolio with Ensemble Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 1134–1141. [Google Scholar]
- Brandt, M.W. Portfolio choice problems. In Handbook of Financial Econometrics: Tools and Techniques; Elsevier: Amsterdam, The Netherlands, 2010; pp. 269–336. [Google Scholar]
- Magdon-Ismail, M.; Atiya, A.F. Maximum drawdown. Risk Mag. 2004, 17, 99–102. [Google Scholar]
FF25 | AR[%] ↑ | RISK[%] ↓ | R/R↑ | MaxDD[%] ↓ | TO[%] ↓ | |
---|---|---|---|---|---|---|
EW | 8.92 | 18.60 | 0.48 | −54.12 | 12.36 | |
MV | 9.75 | 14.34 | 0.68 | −50.69 | 33.10 | |
DRP | 9.74 | 14.35 | 0.68 | −50.72 | 9.35 | |
EGO | 8.64 | 19.59 | 0.44 | −57.26 | 76.52 | |
RMCVaR | 9.65 | 15.50 | 0.62 | −49.59 | 34.96 | |
AWCVaR | 9.14 | 16.03 | 0.57 | −55.82 | 23.11 | |
WCVaR | 95% | 9.12 | 16.56 | 0.55 | −54.23 | 18.19 |
96% | 9.01 | 15.82 | 0.56 | −53.29 | 20.82 | |
97% | 9.01 | 15.94 | 0.56 | −57.11 | 26.00 | |
98% | 9.41 | 16.04 | 0.58 | −55.91 | 22.41 | |
99% | 9.08 | 16.15 | 0.56 | −58.43 | 31.22 | |
RM-WCVaR | 10.44 | 14.26 | 0.73 | −45.26 | 8.12 |
FF48 | AR[%] ↑ | RISK[%] ↓ | R/R↑ | MaxDD[%] ↓ | TO[%] ↓ | |
---|---|---|---|---|---|---|
EW | 9.36 | 17.12 | 0.55 | −52.90 | 22.03 | |
MV | 8.86 | 12.77 | 0.69 | −43.84 | 28.48 | |
DRP | 8.78 | 12.20 | 0.72 | −38.92 | 17.15 | |
EGO | 11.11 | 20.61 | 0.54 | −57.39 | 79.60 | |
RMCVaR | 8.27 | 12.82 | 0.65 | −38.28 | 129.31 | |
AWCVaR | 11.70 | 13.01 | 0.90 | −42.60 | 39.44 | |
WCVaR | 95% | 11.43 | 13.29 | 0.85 | −42.65 | 43.98 |
96% | 10.95 | 13.25 | 0.83 | −43.56 | 41.38 | |
97% | 11.28 | 13.14 | 0.86 | −41.58 | 37.66 | |
98% | 12.12 | 13.15 | 0.92 | −44.35 | 44.27 | |
99% | 12.77 | 13.21 | 0.97 | −40.91 | 40.84 | |
RM-WCVaR | 14.48 | 14.63 | 0.99 | −36.66 | 7.87 |
FF100 | AR[%] ↑ | RISK[%] ↓ | R/R↑ | MaxDD[%] ↓ | TO[%] ↓ | |
---|---|---|---|---|---|---|
EW | 8.86 | 18.87 | 0.47 | −54.53 | 16.18 | |
MV | 9.47 | 14.13 | 0.67 | −50.69 | 39.10 | |
DRP | 9.92 | 14.42 | 0.69 | −51.23 | 19.20 | |
EGO | 8.66 | 20.12 | 0.43 | −57.79 | 78.65 | |
RMCVaR | 9.87 | 15.42 | 0.64 | −49.97 | 35.20 | |
AWCVaR | 8.74 | 16.33 | 0.54 | −43.02 | 23.27 | |
WCVaR | 95% | 7.82 | 16.59 | 0.47 | −40.19 | 18.31 |
96% | 9.09 | 16.44 | 0.55 | −37.12 | 20.97 | |
97% | 9.10 | 16.55 | 0.55 | −40.74 | 26.18 | |
98% | 9.63 | 16.14 | 0.60 | −43.89 | 22.57 | |
99% | 8.04 | 16.59 | 0.48 | −52.50 | 31.44 | |
RM-WCVaR | 14.26 | 20.67 | 0.69 | −37.10 | 18.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagawa, K.; Ito, K. Taming Tail Risk: Regularized Multiple β Worst-Case CVaR Portfolio. Symmetry 2021, 13, 922. https://doi.org/10.3390/sym13060922
Nakagawa K, Ito K. Taming Tail Risk: Regularized Multiple β Worst-Case CVaR Portfolio. Symmetry. 2021; 13(6):922. https://doi.org/10.3390/sym13060922
Chicago/Turabian StyleNakagawa, Kei, and Katsuya Ito. 2021. "Taming Tail Risk: Regularized Multiple β Worst-Case CVaR Portfolio" Symmetry 13, no. 6: 922. https://doi.org/10.3390/sym13060922