Large Eddy Simulation of Periodic Transient Pressure Fluctuation in a Centrifugal Pump Impeller at Low Flow Rate
Abstract
:1. Introduction
2. Model Descriptions
2.1. Geometric Model
2.2. Mesh Generation
3. Numerical Considerations
4. Simulation Verification
5. Results and Discussion
5.1. Pressure Distribution
5.2. Pressure Fluctuation in the Impeller Mid-Height
5.3. Pressure Fluctuation in the Impeller Axial Plane
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | channel |
B | channel |
Cp | pressure coefficient |
Cr | radial velocity |
d | blade thickness |
h | height |
H | head |
n | rotational speed |
p | monitor point |
P | static pressure |
Pi | monitor point static pressure |
average static pressure | |
Q | flow rate |
Qd | design flow rate |
R1 | inlet radius |
R2 | outlet radius |
Rb | blade curvature radius |
t | time |
T | the time of one cycle of inlet flow change |
U2 | circumferential velocity at impeller outlet |
V | relative velocity |
x | coordinate components |
y+ | dimensionless wall distances |
z | section height |
Z | number of blades |
λ1 | inlet blade angle |
λ2 | outlet blade angle |
Acronyms
FFT | Fast Fourier Transform |
LES | Large Eddy Simulation |
RANS | Reynolds-Averaged Navier-Stokes |
SST | Shear Stress Transfer |
References
- Zhou, P.-J.; Dai, J.-C.; Li, Y.-F.; Chen, T.; Mou, J.-G. Unsteady flow structures in centrifugal pump under two types of stall conditions. J. Hydrodyn. 2018, 30, 1038–1044. [Google Scholar] [CrossRef]
- Braun, O. Part Load Flow in Radial Centrifugal Pumps. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland, 2009. [Google Scholar]
- Braun, O.; Avellan, F.; Dupont, P. Unsteady numerical simulations of the flow related to the unstable energy-discharge characteristic of a medium specific speed double suction pump. In Proceedings of the 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, CA, USA, 30 July–2 August 2007. [Google Scholar]
- Tao, R.; Wang, Z. Comparative modeling and analysis of the flow asymmetricity in a centrifugal pump impeller at partial load. Proc. Inst. Mech. Eng. 2019, 234, 237–247. [Google Scholar] [CrossRef]
- Pedersen, N.; Larsen, P.S.; Jacobsen, C.B. Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements. J. Fluids Eng. 2003, 125, 61–72. [Google Scholar] [CrossRef]
- Byskov, R.K.; Jacobsen, C.B.; Pedersen, N. Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part II: Large Eddy Simulations. J. Fluids Eng. 2003, 125, 73–83. [Google Scholar] [CrossRef]
- Zhao, X.; Xiao, Y.; Wang, Z.; Luo, Y.; Cao, L. Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions. J. Fluids Eng. 2017, 140, 021105. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.-Q.; Zhu, Z.-C.; Yu, X.-L.; Zhang, Y.-L. Internal unsteady flow characteristics of centrifugal pump based on entropy generation rate and vibration energy. Proc. Inst. Mech. Eng. 2018, 233, 456–473. [Google Scholar] [CrossRef]
- Ni, D.; Zhang, N.; Gao, B.; Li, Z.; Yang, M. Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump. Energy 2020, 198, 117305. [Google Scholar] [CrossRef]
- Zheng, L.L.; Chen, X.P.; Zhang, W.; Zhu, Z.C.; Cheng, C. Investigation on characteristics of pressure fluctuation in a cen-trifugal pump with clearance flow. J. Mech. Sci. Technol. 2020, 34, 3657–3666. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, N.; Li, Z.; Ni, D.; Yang, M. Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump. J. Fluids Eng. 2016, 138, 051106. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, Z.; Lu, J.; Wu, P. Effects of flow rate and rotational speed on pressure fluctuations in a double-suction cen-trifugal pump. Energy 2018, 170, 212–227. [Google Scholar] [CrossRef]
- Huang, P.; Xiao, Y.; Zhang, J.; Cai, H.; Song, H. The Influence of Flow Rates on Pressure Fluctuation in the Pump Mode of Pump-Turbine with Splitter Blades. Appl. Sci. 2020, 10, 6752. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Zhu, Z.-C.; Dou, H.-S.; Cui, B.-L.; Li, Y.; Zhou, Z.-Z. Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period. Int. J. Turbo JET Engines 2017, 34. [Google Scholar] [CrossRef]
- Li, Z.; Wu, D.; Wang, L.; Huang, B. Numerical Simulation of the Transient Flow in a Centrifugal Pump During Starting Period. J. Fluids Eng. 2010, 132, 081102. [Google Scholar] [CrossRef]
- Li, Z.; Wu, P.; Wu, D.; Wang, L. Experimental and numerical study of transient flow in a centrifugal pump during startup. J. Mech. Sci. Technol. 2011, 25, 749–757. [Google Scholar] [CrossRef]
- Wang, L.Q.; Wu, D.Z.; Zheng, S.Y.; Hu, Z.Y. Study on transient hydrodynamic performance of mixed-flow-pump during starting period. Fluid Mach. 2004, 35, 685–702. [Google Scholar]
- Hu, F.F.; Ma, X.D.; Wu, D.Z.; Wang, L.Q. Transient internal characteristic study of a centrifugal pump during startup process. IOP Conf. Ser. Earth Environ. Sci. 2012, 15, 042016. [Google Scholar] [CrossRef]
- Farhadi, K.; Bousbia-Salah, A.; D’Auria, F. A model for the analysis of pump start-up transients in Tehran Research Reactor. Prog. Nucl. Energy 2007, 49, 499–510. [Google Scholar] [CrossRef]
- Chalghoum, I.; Elaoud, S.; Akrout, M.; Taieb, E.H. Transient behavior of a centrifugal pump during starting period. Appl. Acoust. 2016, 109, 82–89. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Wang, L.; Jiao, L. Numerical Simulation of the Transient Flow in a Radial Flow Pump during Stopping Period. J. Fluids Eng. 2011, 133, 111101. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsukamoto, H. Transient behaviour of a cavitating centrifugal pump at rapid change in operating condi-tions—Part 2: Transient phenomena at pump start-up/shutdown. J. Fluids Eng. 1999, 121, 850–856. [Google Scholar] [CrossRef]
- Thanapandi, P.; Prasad, R. Centrifugal pump transient characteristics and analysis using the method of characteristics. Int. J. Mech. Sci. 1995, 37, 77–89. [Google Scholar] [CrossRef]
- Wu, D.; Wu, P.; Yang, S.; Wang, L. Transient Characteristics of a Closed-Loop Pipe System during Pump Stopping Periods. J. Press. Vessel. Technol. 2014, 136, 021301. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsukamoto, H. Transient behaviour of a cavitating centrifugal pump at rapid change in operating condi-tions—Part 1: Transient phenomena at opening/closure of discharge valve. J. Fluids Eng. 1999, 121, 841–849. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Ohashi, H. Transient characteristics of a centrifugal pump during starting period. J. Fluids Eng. 1982, 104, 6–13. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Yoneda, H.; Sagara, K. The Response of a Centrifugal Pump to Fluctuating Rotational Speed. J. Fluids Eng. 1995, 117, 479–484. [Google Scholar] [CrossRef]
- Westra, R.W.; Broersma, L.; Van Andel, K.; Kruyt, N.P. PIV Measurements and CFD Computations of Secondary Flow in a Centrifugal Pump Impeller. J. Fluids Eng. 2010, 132, 061104. [Google Scholar] [CrossRef]
- Zhang, F.; Appiah, D.; Hong, F.; Zhang, J.; Wei, X. Energy loss evaluation in a side channel pump under different wrap-ping angles using entropy production method. Int. Commun. Heat Mass Transf. 2020, 113, 104526. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Yuan, S.; Chen, K.; Appiah, D. Effect of unrans and hybrid rans-les turbulence models on unsteady turbulent flows inside a side channel pump. J. Fluids Eng. 2020, 142. [Google Scholar] [CrossRef]
- Tao, R.; Xiao, R.; Yang, W.; Wang, F. A Comparative Assessment of Spalart-Shur Rotation/Curvature Correction in RANS Simulations in a Centrifugal Pump Impeller. Math. Probl. Eng. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.-J.; Feng, Z.-P. Two-dimensional analysis of cavitating flows in a centrifugal pump using a single-phase Reynolds averaged Navier—Stokes solver and cavitation model. Proc. Inst. Mech. Eng. 2006, 220, 783–791. [Google Scholar] [CrossRef]
- Liu, H. Numerical Simulation of Hydrodynamic Noise in Centrifugal Pump Based on LES. Chin. J. Mech. Eng. 2013, 49. [Google Scholar] [CrossRef]
- Kye, B.; Park, K.; Choi, H.; Lee, M.; Kim, J.-H. Flow characteristics in a volute-type centrifugal pump using large eddy simulation. Int. J. Heat Fluid Flow 2018, 72, 52–60. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Z.; Dou, H.-S.; Li, Y. Large eddy simulation of energy gradient field in a centrifugal pump impeller. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 4047–4057. [Google Scholar] [CrossRef]
- Pedersen, N. Experimental Investigation of Flow Structures in a Centrifugal Pump Impeller Using Particle Image Velocimetry; ET-PHD, No. 2000-05; Technical University of Denmark: Lynby, Denmark, 2001. [Google Scholar]
- Zhou, P.J. Study on Stall Characteristics of Centrifugal Pump; China Agricultural University: Beijing, China, 2015. [Google Scholar]
Geometry | Symbol | Size |
---|---|---|
Number of blades | Z | 6 |
Inlet radius | R1 | 35.5 mm |
Outlet radius | R2 | 95 mm |
Inlet height | h1 | 13.8 mm |
Outlet height | h2 | 5.8 mm |
Blade thickness | d | 3 mm |
Blade curvature radius | Rb | 70 mm |
Inlet blade angle | λ1 | 19.7° |
Outlet blade angle | λ2 | 18.4° |
Boundary Conditions | |
Inflow | Inlet-velocity |
Outflow | Outlet-pressure |
Wall | No-slip and smooth wall |
Numerical Setup | |
Absolute criteria of residual | 10-6 |
Number of time steps | 8640 |
Time step | 0.00023(s) |
Max iterations/Time step | 10 |
Turbulence intensity (inlet) | 5% |
Turbulence viscosity rate (inlet) | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, R.; Chen, X.; Zhang, Z.; Zhu, Z.; Li, Y. Large Eddy Simulation of Periodic Transient Pressure Fluctuation in a Centrifugal Pump Impeller at Low Flow Rate. Symmetry 2021, 13, 311. https://doi.org/10.3390/sym13020311
Kuang R, Chen X, Zhang Z, Zhu Z, Li Y. Large Eddy Simulation of Periodic Transient Pressure Fluctuation in a Centrifugal Pump Impeller at Low Flow Rate. Symmetry. 2021; 13(2):311. https://doi.org/10.3390/sym13020311
Chicago/Turabian StyleKuang, Renfei, Xiaoping Chen, Zhiming Zhang, Zuchao Zhu, and Yu Li. 2021. "Large Eddy Simulation of Periodic Transient Pressure Fluctuation in a Centrifugal Pump Impeller at Low Flow Rate" Symmetry 13, no. 2: 311. https://doi.org/10.3390/sym13020311
APA StyleKuang, R., Chen, X., Zhang, Z., Zhu, Z., & Li, Y. (2021). Large Eddy Simulation of Periodic Transient Pressure Fluctuation in a Centrifugal Pump Impeller at Low Flow Rate. Symmetry, 13(2), 311. https://doi.org/10.3390/sym13020311