A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind
Abstract
:1. Introduction
2. The Degenerate Poly-Cauchy Polynomials of the Second Kind
3. The Degenerate Unipoly-Cauchy Polynomials of the Second Kind
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borisov, B.S. The p-binomial transform Cauchy numbers and figurate numbers. Proc. Jangjeon Math. Soc. 2016, 19, 631–644. [Google Scholar]
- Kim, T. Degenerate Cauchy numbers and polynomials of the second kind. Adv. Stud. Contemp. Math. 2017, 27, 441–449. [Google Scholar]
- Kim, T. On degenerate Cauchy numbers and polynomials. Proc. Jangjeon Math. Soc. 2015, 18, 307–312. [Google Scholar]
- Kim, T.; Jang, L.C.; Kim, D.S.; Kim, H.Y. Some identities on type 2 degenerate Bernoulli polynomials of the second kind. Symmetry 2020, 12, 510. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.-K.; Jang, G.-W.; Kim, D.S.; Kwon, J. Some identities of the type 2 degenerate Bernoulli and Euler numbers. Adv. Stud. Contemp. Math. 2019, 29, 613–632. [Google Scholar]
- Jang, L.C.; Kim, W.; Kwon, H.-I.; Kim, T. On degenerate Daehee polynomials and numbers of the third kind. J. Comput. Appl. Math. 2020, 364, 112343. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Jang, L.C. Degenerate poly-Bernoulli numbers and polynomials. Informatica 2020, 31, 2–8. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, J.; Lee, H. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2020, 2020, 168. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, T.; Kim, D.S.; Kim, H.Y. Some identities for degenerate complete and incomplete r-Bell polynomials. J. Inequal. Appl. 2020, 2020, 23. [Google Scholar] [CrossRef] [Green Version]
- Lim, D. Modified degenerate Daehee numbers and polynomials arising from differential equations. Adv. Stud. Contemp. Math. 2018, 28, 497–506. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, J.; Lee, H. A note on degenerate gamma random variables. Rev. Educ. 2020, 388, 39–44. [Google Scholar]
- Kim, T.; Kim, D.S. Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2020, 114, 19. [Google Scholar] [CrossRef]
- Pyo, S.-S.; Kim, T.; Rim, S.-H. Degenerate Cauchy numbers of the third kind. J. Inequal. Appl. 2018, 32, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Kim, D.S.; Lee, H.; Kwon, J. Degenerate binomial coefficients and degenerate hypergeometric functions. Adv. Differ. Equ. 2020, 2020, 115. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 2020, 487, 124017. [Google Scholar] [CrossRef] [Green Version]
- Pyo, S.-S. Degenerate Cauchy numbers and polynomials of the fourth kind. Adv. Stud. Contemp. Math. 2018, 28, 127–138. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. Hermite based poly-Bernoulli polynomials with a q-parameter. Adv. Stud. Contemp. Math. 2018, 28, 285–296. [Google Scholar]
- Kim, D.S.; Kim, T. On sums of finite products of balancing polynomials. J. Comput. Appl. Math. 2020, 377, 112913. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on polyexponential and unipoly functions. Russ. J. Math. Phys. 2019, 26, 40–49. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Some identities on generalized degenerate Genocchi and Euler numbers. Informatica 2020, 31, 42–51. [Google Scholar]
- Kim, T.; Kim, D.S.; Jang, L.C.; Kim, H.Y. A note on discrete degenerate random variables. Proc. Jangjeon Math. Soc. 2020, 23, 125–135. [Google Scholar]
- Khan, W.A.; Ahmad, M. Partially degenerate poly-Bernoulli polynomials associated with Hermite polynomials. Adv. Stud. Contemp. Math. 2018, 28, 487–496. [Google Scholar]
- Kruchinin, D.V.; Kruchinin, V.V. Explicit formula for reciprocal generating function and its application. Adv. Stud. Contemp. Math. 2019, 29, 365–372. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, J.; Kim, H.Y. A note on degenerate Genocchi and poly-Genocchi numbers and polynomials. J. Inequal. Appl. 2020, 2020, 110. [Google Scholar] [CrossRef] [Green Version]
- Roman, S. The umbral calculus. In Pure and Applied Mathematics; Academic Press, Inc.: New York, NY, USA, 1984; p. 193. ISBN 0-12-594380-6. [Google Scholar]
- Kaneko, M. Poly-Bernoulli numbers. J. Theor. Nr. Bordeanes 1997, 9, 221–228. [Google Scholar] [CrossRef]
- Bayad, A.; Hamahata, Y. Multiple polylogarithms and multi-poly-Bernoulli polynomials. Funct. Approx. Comment. Math. 2012, 46, 45–61. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.-C.; Lee, H. Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae-Stirling numbers. Adv. Differ. Equ. 2020, 2020, 245. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Some relations of two type 2 polynomials and discrete harmonic numbers and polynomials. Symmetry 2020, 12, 905. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli Numbers. Russ. J. Math. Phys. 2020, 27, 227–235. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.K.; Jang, L.-C. A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind. Symmetry 2020, 12, 1066. https://doi.org/10.3390/sym12071066
Kim HK, Jang L-C. A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind. Symmetry. 2020; 12(7):1066. https://doi.org/10.3390/sym12071066
Chicago/Turabian StyleKim, Hye Kyung, and Lee-Chae Jang. 2020. "A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind" Symmetry 12, no. 7: 1066. https://doi.org/10.3390/sym12071066