Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach
Abstract
:1. Introduction
2. Data Used
3. General Trends in Grain Production following the Rural Reform in China
3.1. Changes in China’s Aggregate Grain Output
3.2. Changes in the China’s Grain Cropping Pattern
3.3. Spatial Changes in China’s Grain Production
4. Preliminaries for Index Decomposition Analysis
5. Decomposition of China’s Grain Output Changes during 1978–2013
5.1. Period-Wise Analysis
5.2. Crop-Wise Analysis
5.2.1. Rice
5.2.2. Wheat
5.2.3. Maize
5.2.4. Soybeans
5.3. Region-Wise Analysis
6. Discussion
7. Conclusions and Policy Implications
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Grain | Rice | Wheat | Maize | Soybean | Others | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1978 | 2013 | Change, % | 1978 | 2013 | Change, % | 1978 | 2013 | Change, % | 1978 | 2013 | Change, % | 1978 | 2013 | Change, % | 1978 | 2013 | Change, % | |
Beijing | 3.3 | 6.0 | 83 | 4.7 | 5.0 | 6 | 3.4 | 5.2 | 52 | 3.6 | 6.6 | 84 | 2.2 | 2.0 | −11 | 2.5 | 3.3 | 34 |
Tianjin | 1.9 | 5.2 | 170 | 3.5 | 7.7 | 122 | 2.3 | 5.2 | 128 | 1.7 | 5.3 | 205 | 1.3 | 1.2 | −5 | 1.4 | 2.3 | 58 |
Hebei | 2.0 | 5.3 | 162 | 4.9 | 6.8 | 37 | 2.1 | 5.8 | 177 | 2.3 | 5.5 | 137 | 1.3 | 2.0 | 57 | 1.6 | 3.1 | 92 |
Shanxi | 1.8 | 4.0 | 120 | 5.3 | 7.0 | 32 | 1.2 | 3.4 | 191 | 3.4 | 5.7 | 67 | 1.2 | 1.0 | −11 | 1.5 | 1.4 | −5 |
Neimenggu | 0.9 | 4.9 | 455 | 0.7 | 7.4 | 894 | 0.7 | 3.2 | 371 | 3.4 | 6.5 | 91 | 0.7 | 2.1 | 211 | 0.9 | 2.8 | 206 |
Liaoning | 2.9 | 6.8 | 136 | 5.5 | 7.8 | 43 | 1.2 | 4.8 | 313 | 4.1 | 7.0 | 71 | 1.0 | 2.5 | 146 | 1.9 | 4.5 | 131 |
Jilin | 2.4 | 7.4 | 210 | 4.3 | 7.8 | 79 | 1.1 | 3.1 | 7.9 | 157 | 1.1 | 2.1 | 92 | 1.8 | 4.8 | 158 | ||
Heilongjiang | 2.0 | 5.2 | 165 | 3.3 | 7.0 | 111 | 1.4 | 2.9 | 104 | 3.1 | 5.9 | 90 | 1.3 | 1.6 | 18 | 1.6 | 3.7 | 128 |
Shanghai | 5.1 | 6.8 | 33 | 5.6 | 8.5 | 53 | 3.8 | 4.0 | 5 | 5.5 | 6.9 | 27 | 2.8 | 4.1 | 4.1 | 0 | ||
Jiangsu | 3.6 | 6.4 | 76 | 4.8 | 8.5 | 76 | 2.7 | 5.1 | 87 | 2.8 | 5.1 | 84 | 1.1 | 2.2 | 112 | 3.2 | 4.4 | 37 |
Zhejiang | 4.2 | 5.9 | 41 | 4.8 | 7.0 | 47 | 2.3 | 3.7 | 63 | 2.3 | 4.2 | 82 | 1.8 | 2.6 | 39 | 2.6 | 3.9 | 48 |
Anhui | 2.4 | 5.0 | 107 | 3.8 | 6.2 | 61 | 1.6 | 5.5 | 241 | 1.6 | 5.0 | 209 | 0.5 | 1.2 | 134 | 2.1 | 1.9 | −11 |
Fujian | 3.3 | 5.5 | 68 | 3.6 | 6.1 | 71 | 1.4 | 3.0 | 122 | 4.0 | 0.9 | 2.5 | 169 | 3.2 | 4.7 | 45 | ||
Jiangxi | 2.7 | 5.7 | 109 | 3.2 | 6.0 | 88 | 0.8 | 2.1 | 157 | 1.0 | 4.1 | 323 | 0.9 | 2.3 | 147 | 1.7 | 3.5 | 109 |
Shandong | 2.6 | 6.2 | 143 | 3.9 | 8.4 | 117 | 2.2 | 6.0 | 179 | 2.9 | 6.4 | 124 | 1.0 | 2.5 | 139 | 3.2 | 7.0 | 118 |
Henan | 2.1 | 5.7 | 172 | 4.5 | 7.6 | 67 | 2.3 | 6.0 | 167 | 2.8 | 5.6 | 101 | 0.8 | 1.6 | 106 | 1.3 | 3.1 | 137 |
Hubei | 3.1 | 5.9 | 89 | 4.2 | 8.0 | 91 | 2.0 | 3.8 | 87 | 2.6 | 4.7 | 85 | 1.4 | 2.3 | 65 | 1.7 | 2.9 | 69 |
Hunan | 3.3 | 5.9 | 82 | 4.1 | 6.3 | 51 | 1.2 | 3.4 | 176 | 1.5 | 5.4 | 256 | 1.1 | 2.2 | 110 | 1.8 | 3.9 | 114 |
Guangdong | 2.8 | 5.1 | 84 | 3.3 | 5.4 | 64 | 1.0 | 3.3 | 235 | 1.2 | 4.6 | 272 | 0.6 | 2.5 | 316 | 1.8 | 4.6 | 151 |
Guangxi | 2.2 | 4.9 | 129 | 3.2 | 5.6 | 79 | 0.7 | 1.7 | 137 | 1.6 | 4.5 | 178 | 0.6 | 1.4 | 127 | 1.0 | 2.5 | 144 |
Sichuan | 2.9 | 5.2 | 77 | 4.6 | 7.7 | 67 | 2.1 | 3.4 | 61 | 2.8 | 5.5 | 98 | 1.3 | 2.2 | 64 | 2.0 | 3.7 | 81 |
Guizhou | 2.4 | 3.3 | 38 | 4.2 | 5.3 | 25 | 0.9 | 2.0 | 131 | 2.6 | 3.8 | 49 | 1.0 | 0.6 | −38 | 1.3 | 2.4 | 88 |
Yunnan | 2.3 | 4.1 | 73 | 4.0 | 5.8 | 46 | 1.3 | 1.8 | 43 | 2.3 | 4.9 | 114 | 1.8 | 2.5 | 42 | 1.4 | 2.4 | 75 |
Xizang | 2.5 | 5.5 | 118 | 7.5 | 6.0 | −20 | 2.9 | 6.4 | 120 | 5.8 | 4.0 | 2.3 | 5.2 | 126 | ||||
Shaanxi | 1.8 | 3.9 | 120 | 5.1 | 7.4 | 44 | 1.6 | 3.6 | 128 | 2.7 | 5.0 | 87 | 1.0 | 1.6 | 68 | 1.1 | 2.2 | 100 |
Gansu | 1.6 | 4.0 | 143 | 3.9 | 7.2 | 82 | 1.7 | 2.9 | 76 | 3.4 | 5.9 | 73 | 1.8 | 2.1 | 12 | 1.2 | 3.2 | 168 |
Qinghai | 2.1 | 3.7 | 76 | 2.6 | 3.8 | 46 | 7.0 | 1.6 | 3.1 | 91 | ||||||||
Ningxia | 1.5 | 4.7 | 204 | 5.9 | 8.4 | 41 | 1.6 | 3.1 | 95 | 3.4 | 7.9 | 134 | 0.8 | 0.9 | 1.7 | 89 | ||
Xinjiang | 1.6 | 6.2 | 284 | 2.6 | 8.9 | 241 | 1.3 | 5.4 | 302 | 2.2 | 7.3 | 236 | 1.5 | 3.0 | 102 | 1.3 | 4.2 | 236 |
Min | 0.9 | 3.3 | 271 | 0.7 | 5.0 | 573 | 0.7 | 1.7 | 149 | 1.0 | 3.8 | 298 | 0.5 | 0.6 | 17 | 0.9 | 1.4 | 63 |
Average | 2.5 | 5.4 | 112 | 4.0 | 6.7 | 69 | 1.8 | 5.0 | 169 | 2.8 | 6.0 | 114 | 1.1 | 1.8 | 69 | 1.7 | 3.3 | 95 |
Max | 5.1 | 7.4 | 45 | 7.5 | 8.9 | 18 | 3.8 | 6.4 | 69 | 5.5 | 7.9 | 45 | 2.2 | 4.0 | 83 | 4.1 | 7.0 | 68 |
Appendix B
Regions | Decomposition of Changes in Harvest | Total Change | Normalized Decomposition | Contribution | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | S | M | Y | A | S | M | Y | |||
EC | −5.5 | −11.1 | 0.4 | 47.2 | 31.1 | −17.7 | −35.8 | 1.4 | 152.1 | 10.6 |
Shanghai | −0.2 | −1.8 | −0.1 | 0.6 | −1.5 | −15.4 | −121.0 | −6.6 | 43.0 | −0.5 |
Jiangsu | −2.0 | −3.2 | 0.7 | 15.9 | 11.3 | −18.0 | −28.5 | 5.8 | 140.7 | 3.9 |
Zhejiang | −1.5 | −9.7 | −0.6 | 5.2 | −6.6 | −22.3 | −146.7 | −9.2 | 78.2 | −2.3 |
Anhui | −1.1 | 2.9 | 0.2 | 15.9 | 18.0 | −5.9 | 16.2 | 1.1 | 88.7 | 6.1 |
Jiangxi | −0.7 | 0.7 | 0.3 | 9.6 | 9.8 | −7.0 | 6.9 | 2.9 | 97.3 | 3.4 |
MC | −4.1 | −0.9 | 4.5 | 54.9 | 54.4 | −7.5 | −1.7 | 8.2 | 101.0 | 18.6 |
Henan | −1.0 | 5.9 | 3.4 | 29.9 | 38.1 | −2.6 | 15.3 | 8.8 | 78.5 | 13.0 |
Hubei | −1.5 | −4.4 | 0.1 | 13.5 | 7.8 | −18.9 | −56.6 | 1.2 | 174.4 | 2.6 |
Hunan | −1.6 | −2.4 | 1.0 | 11.4 | 8.5 | −18.8 | −28.4 | 12.2 | 134.9 | 2.9 |
NC | −3.6 | −2.1 | 13.9 | 64.1 | 72.3 | −5.0 | −2.9 | 19.2 | 88.7 | 24.7 |
Beijing | −0.2 | −1.7 | 0.1 | 1.0 | −0.9 | −21.9 | −191.0 | 5.8 | 107.0 | −0.3 |
Tianjin | −0.1 | −0.8 | 0.2 | 1.3 | 0.6 | −18.8 | −135.3 | 27.1 | 227.0 | 0.2 |
Hebei | −1.2 | −3.5 | 3.1 | 19.0 | 17.5 | −6.6 | −19.9 | 17.8 | 108.7 | 6.0 |
Shanxi | −0.5 | −0.3 | 2.8 | 4.4 | 6.4 | −7.3 | −4.9 | 43.7 | 68.5 | 2.2 |
Neimenggu | 0.2 | 8.0 | 7.6 | 10.1 | 25.9 | 0.9 | 30.8 | 29.1 | 39.1 | 8.9 |
Shandong | −1.9 | −3.8 | 0.2 | 28.3 | 22.8 | −8.5 | −16.7 | 0.9 | 124.3 | 7.8 |
NE | −1.3 | 19.1 | 24.0 | 38.4 | 80.2 | −1.6 | 23.9 | 29.9 | 47.9 | 27.4 |
Liaoning | −0.8 | −1.8 | 4.7 | 8.1 | 10.2 | −7.9 | −17.5 | 46.4 | 79.1 | 3.5 |
Jilin | −0.5 | 5.7 | 5.5 | 14.3 | 25.0 | −2.2 | 22.8 | 22.0 | 57.4 | 8.5 |
Heilongjiang | 0.1 | 15.2 | 13.7 | 16.0 | 45.0 | 0.1 | 33.8 | 30.5 | 35.6 | 15.4 |
NW | −1.3 | −1.3 | 4.3 | 21.7 | 23.3 | −5.6 | −5.5 | 18.3 | 92.9 | 8.0 |
Shaanxi | −0.7 | −3.2 | 1.1 | 7.0 | 4.2 | −17.7 | −75.9 | 25.6 | 168.0 | 1.4 |
Gansu | −0.3 | 0.2 | 1.5 | 5.1 | 6.5 | −4.3 | 3.1 | 22.6 | 78.6 | 2.2 |
Qinghai | −0.1 | −0.4 | 0.1 | 0.6 | 0.1 | −117.1 | −325.3 | 78.3 | 464.2 | 0.0 |
Ningxia | −0.1 | 0.2 | 1.2 | 1.2 | 2.6 | −3.1 | 9.4 | 46.2 | 47.5 | 0.9 |
Xinjiang | −0.1 | 1.8 | 0.5 | 7.8 | 10.0 | −0.8 | 18.2 | 4.5 | 78.0 | 3.4 |
SC | −3.4 | −18.5 | 0.2 | 24.1 | 2.5 | −134.9 | −740.0 | 9.6 | 965.3 | 0.9 |
Fujian | −0.7 | −4.0 | −0.3 | 4.4 | −0.6 | −117.0 | −620.6 | −41.6 | 679.1 | −0.2 |
Guangdong * | −1.7 | −11.0 | 0.4 | 11.0 | −1.3 | −135.8 | −875.5 | 32.1 | 879.2 | −0.4 |
Guangxi | −0.9 | −3.5 | 0.1 | 8.7 | 4.4 | −20.9 | −80.5 | 2.4 | 199.1 | 1.5 |
SW | −3.9 | 1.8 | 0.1 | 31.2 | 29.3 | −13.2 | 6.3 | 0.4 | 106.5 | 10.0 |
Sichuan * | −2.7 | −3.8 | 0.6 | 21.3 | 15.4 | −17.9 | −24.9 | 4.1 | 138.7 | 5.2 |
Guizhou | −0.6 | 2.2 | −0.7 | 2.9 | 3.9 | −15.9 | 57.9 | −18.0 | 75.9 | 1.3 |
Yunnan | −0.5 | 3.5 | 0.2 | 6.3 | 9.6 | −4.9 | 36.7 | 2.1 | 66.1 | 3.3 |
Xizang | 0.0 | −0.1 | 0.0 | 0.6 | 0.5 | −7.7 | −18.0 | −5.0 | 130.7 | 0.2 |
References
- Anderson, K.; Strutt, A. Food security policy options for China: Lessons from other countries. Food Policy 2014, 49, 50–58. [Google Scholar] [CrossRef]
- Dev, S.M.; Zhong, F. Trade and stock management to achieve national food security in India and China? China Agric. Econ. Rev. 2015, 7, 641–654. [Google Scholar] [CrossRef]
- Fan, S.; Rue, C. Achieving food and nutrition security under rapid transformation in China and India. China Agric. Econ. Rev. 2015, 7, 530–540. [Google Scholar] [CrossRef]
- Zhu, J.; Li, T.X.; Lin, D.Y.; Zhong, F.N. Analysis of China’s nine-year consecutive grain production growth: Contribution and future potential of inter-crop structural adjustment. Issues Agric. Econ. 2013, 11, 36–43. (In Chinese) [Google Scholar]
- Jiang, C.Y. Food security in China: Situations and prospects. Rev. Econ. Res. 2012, 40, 12–35. (In Chinese) [Google Scholar]
- Yang, H.; Li, X.B. Cultivated land and food supply in China. Land Use Policy 2000, 17, 73–88. [Google Scholar] [CrossRef]
- Song, X.Q.; Wu, Z.F. Modelling and mapping trends in grain production growth in China. Outlook Agric. 2013, 42, 255–263. [Google Scholar] [CrossRef]
- Xu, S.W.; Wu, J.Z.; Song, W.; Li, Z.Q.; Li, Z.M.; Kong, F.T. Spatial-temporal changes in grain production, consumption and driving mechanism in China. J. Integr. Agric. 2013, 12, 1889–1902. [Google Scholar] [CrossRef]
- Jin, T. Effects of cultivated land use on temporal-spatial variation of grain production in China. J. Nat. Resour. 2014, 29, 911–919. (In Chinese) [Google Scholar]
- Yang, H. Growth in China’s grain production 1978–1997: A disaggregate analysis. World Dev. 1999, 27, 2137–2154. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, X.; Cai, H.; Zhang, D. Cultivated land changes and agricultural potential productivity in mainland China. Sustainability 2015, 7, 11893–11908. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Wang, P.; Tao, F. Recent patterns of production for the main cereal grains: Implications for food security in China. Reg. Environ. Chang. 2016. [Google Scholar] [CrossRef]
- Zhou, Z.Y. Achieving food security in China: Past three decades and beyond. China Agric. Econ. Rev. 2010, 9, 251–275. [Google Scholar] [CrossRef]
- Tan, S.H. Impacts of cultivated land conversion on environmental sustainability and grain self-sufficiency in China. China World Econ. 2008, 16, 75–92. [Google Scholar] [CrossRef]
- Cater, C.A.; Zhong, F.; Zhu, J. Advances in Chinese agriculture and its global implication. Appl. Econ. Perspect. Policy 2012, 34, 1–36. [Google Scholar] [CrossRef]
- Fan, S.; Agcaoili-Sombilla, M. Why projections on China’s future food supply and demand differ. Aust. J. Agric. Resour. Econ. 1997, 41, 169–190. [Google Scholar] [CrossRef]
- Zhu, J.; Hare, D.; Zhong, F.N.; Zhou, Z.Y. Grain promotion and food consumption: Analysis of Chinese provincial data. Appl. Econ. Perspect. Policy 2015, 2, 332–345. [Google Scholar] [CrossRef]
- Li, T.X.; Zhu, J.; Baležentis, T.; Cao, L.J.; Yu, W.S.; Hong, W. Cropping pattern adjustment in China’s grain production and its impact on land and water use. Transform. Bus. Econ. 2016. submitted. [Google Scholar]
- Liu, S.F. The Research of Rice Spatial Distribution: From 1978–2004. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2007. [Google Scholar]
- Yang, C. The Research of Spatial Changes and Regional Optimization in the Production of Major Grain Crops in China. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2009. [Google Scholar]
- Chen, Y.; Li, X.; Jing, W. Changes and effecting factors of grain production in China. Chin. Geogr. Sci. 2011, 21, 676–684. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Xu, Z.; Ying, R. Regional heterogeneity in the changes of grain production in the context of urbanization and structural adjustment in China. China Soft Sci. Mag. 2014, 11, 71–86. (In Chinese) [Google Scholar]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ang, B.W. Index decomposition analysis applied to CO2 emission studies. Ecol. Econ. 2013, 93, 313–329. [Google Scholar] [CrossRef]
- Ang, B.W.; Huang, H.C.; Mu, A.R. Properties and linkages of some index decomposition analysis methods. Energy Policy 2009, 37, 4624–4632. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, T.; Liu, N.; Zhang, X.; Xu, X.; Lin, T. A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China. Energy 2014, 68, 562–571. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V. Decomposition of energy-related GHG emissions in agriculture over 1995–2008 for European countries. Appl. Energy 2014, 114, 949–957. [Google Scholar] [CrossRef]
- Brizga, J.; Feng, K.; Hubacek, K. Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010. Energy 2013, 59, 743–753. [Google Scholar] [CrossRef]
- Baležentis, A.; Baležentis, T.; Streimikiene, D. The energy intensity in Lithuania during 1995–2009: A LMDI approach. Energy Policy 2011, 39, 7322–7334. [Google Scholar] [CrossRef]
- Lin, J. Rural reforms and agricultural growth in China. Am. Econ. Rev. 1992, 82, 34–51. [Google Scholar]
- Zhou, Z.Y.; Tian, W.M. Evolving trends of grain production in China. Australas. Agribus. Rev. 2006, 14, 1–10. [Google Scholar]
- Nath, P.; Luan, Y.B.; Yang, W.M.; Yang, C.; Chen, W.; Li, Q.; Cui, X.F. Changes in arable land demand for food in India and China: A potential threat to food security. Sustainability 2015, 7, 5371–5397. [Google Scholar] [CrossRef]
- Yu, W.S.; Jensen, H.G. China’s agricultural policy transition: Impacts of recent reforms and future scenarios. J. Agric. Econ. 2010, 61, 343–368. [Google Scholar] [CrossRef]
- Ito, J.; Ni, J. Capital deepening, land use policy, and self-sufficiency in China’s grain sector. China Econ. Rev. 2013, 24, 95–107. [Google Scholar] [CrossRef]
- Huang, J.K.; Yang, J.; Rozelle, S. China’s agriculture: Drivers of change and implications for China and the rest of world. Agric. Econ. 2010, 41, 47–55. [Google Scholar] [CrossRef]
- Veeck, G. China’s food security: Past success and future challenges. Eurasian Geogr. Econ. 2013, 54, 42–56. [Google Scholar]
- Holst, R.; Yu, X.H.; Grün, C. Climate change, risk and grain yields in China. J. Integr. Agric. 2013, 12, 1279–1291. [Google Scholar] [CrossRef]
- Wu, J.Z.; Zhang, J.H.; Wang, S.G.; Kong, F.T. Assessment of food security in China: A new perspective based on production-consumption coordination. Sustainability 2016, 8, 183. [Google Scholar] [CrossRef]
- Li, J.; Li, Z. Physical limitations and challenges to grain security in China. Food Secur. 2014, 6, 159–167. [Google Scholar] [CrossRef]
- Xu, F.; Zhong, Q.B. The transformation of low-and middle-yield farmland is the effective path to the realization of the grain security in China. Manag. World 2010, 12, 39–47. (In Chinese) [Google Scholar]
- Liu, N.; Li, X.; Waddington, S.R. Soil and fertilizer constraints to wheat and rice production and their alleviation in six intensive cereal-based farming systems of the Indian sub-continent and China. Food Secur. 2014, 6, 629–643. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Cui, S. Effects of urbanization on arable land requirements in China, based on food consumption patterns. Food Secur. 2013, 5, 439–449. [Google Scholar] [CrossRef]
- Khan, S.; Hanjra, M.A.; Mu, J. Water management and crop production for food security in China: A review. Agric. Water Manag. 2009, 93, 349–360. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef] [PubMed]
- Zhong, F.N. Understanding issues regarding food security and rising labor costs in China. Issues Agric. Econ. 2016, 1, 4–9. (In Chinese) [Google Scholar]
- Ni, H.X.; Yu, K.Y.; Lv, X.D.; Liu, W.B.; Ma, J.L.; Zhang, Y.X.; Li, W.W.; Li, L.K. Research on food security and the control of “non-essential” agricultural import in China. Issues Agric. Econ. 2016, 7, 53–59. (In Chinese) [Google Scholar]
- Gale, H.F.; Hansen, J.; Jewison, M. China’s Growing Demand for Agricultural Imports; USDA-ERS Economic Information Bulletin Number 136; U.S. Department of Agriculture (USDA): Washington, DC, USA, 2015. Available online: http://ssrn.com/abstract=2709118 (accessed on 16 November 2016).
- Fan, Q.; Qi, D.; Li, S. Study on the reform and transformation of corn temporary storage system in China. Issues Agric. Econ. 2016, 8, 74–81. (In Chinese) [Google Scholar]
- Chen, J.S. An analysis of China’s rural economic situation in 2012 and outlook for 2013. Chin. Rural Econ. 2013, 2, 4–11. (In Chinese) [Google Scholar]
- Wang, J.M.; Xiao, H.B. The nature and prospects of the continuously growth of China’s grain output in eight years. Issues Agric. Econ. 2013, 2, 22–30. (In Chinese) [Google Scholar]
- Zhang, H.Z. Feeding the Chinese: Wither the Self-Sufficiency Policy? IPP Review. 18 May 2016. Available online: http://www.ippreview.com/index.php/Home/Blog/single/id/143.html (accessed on 16 November 2016).
- Zhang, X.; Guo, Q.; Shen, X.; Yu, S.; Qiu, G. Water quality, agriculture and food safety in China: Current situation, trends, interdependencies, and management. J. Integr. Agric. 2015, 14, 2365–2379. [Google Scholar] [CrossRef]
- Zhang, J.H. China’s success in increasing per capita food production. J. Exp. Bot. 2011, 5, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Qiu, H.J.; Jing, Y.; Liao, S.P.; Han, W. Decomposition of factors contributed to the increase of China’s chemical fertilizer use and projections for future fertilizer use in China. J. Nat. Resour. 2013, 28, 1869–1878. (In Chinese) [Google Scholar]
- Jiao, X.; Yang, L.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Yuan, L.; Jiang, R.; Jiang, B.; Rengel, Z.; et al. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.H.; Wang, H.; Chen, F.; Chu, Q.Q. The spatial-temporal distribution characteristics and yield potential of medium-low yielded farmland in China. Chin. Agric. Sci. Bull. 2010, 26, 369–373. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhang, J.H.; Tang, G.R.; Chen, M.; Wang, L.C. Virtual water in the international trade of agricultural products of China. Sci. Total Environ. 2016, 1, 557–558. [Google Scholar] [CrossRef] [PubMed]
Rice | Wheat | Maize | Soybeans | Others | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Output | ||||||||||
Mt | Share | Mt | Share | Mt | Share | Mt | Share | Mt | Share | |
1978 | 136.9 | 44.9 | 53.8 | 17.7 | 56.0 | 18.4 | 7.6 | 2.5 | 50.5 | 16.6 |
1984 | 178.3 | 43.8 | 87.8 | 21.6 | 73.4 | 18.0 | 9.7 | 2.4 | 58.1 | 14.3 |
1998 | 198.7 | 38.8 | 109.7 | 21.4 | 133.0 | 26.0 | 15.2 | 3.0 | 55.8 | 10.9 |
2003 | 160.7 | 37.3 | 86.5 | 20.1 | 115.8 | 26.9 | 15.4 | 3.6 | 52.3 | 12.1 |
2013 | 203.3 | 33.8 | 121.7 | 20.2 | 217.7 | 36.2 | 12.0 | 2.0 | 47.3 | 7.8 |
Area sown | ||||||||||
Mha | Share | Mha | Share | Mha | Share | Mha | Share | Mha | Share | |
1978 | 34.4 | 28.5 | 29.2 | 24.2 | 20.0 | 16.6 | 7.1 | 5.9 | 29.9 | 24.8 |
1984 | 33.2 | 29.4 | 29.6 | 26.2 | 18.5 | 16.4 | 7.3 | 6.5 | 24.3 | 21.5 |
1998 | 31.2 | 27.4 | 29.8 | 26.2 | 25.2 | 22.2 | 8.5 | 7.5 | 19.1 | 16.8 |
2003 | 26.5 | 26.7 | 22.0 | 22.1 | 24.1 | 24.2 | 9.3 | 9.4 | 17.5 | 17.6 |
2013 | 30.3 | 27.1 | 24.1 | 21.5 | 36.3 | 32.4 | 6.8 | 6.1 | 14.4 | 12.9 |
Periods | Area Effect | Spatial Effect | Crop-Mix Effect | Yield Effect | Total Change | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mt | Share | Mt | Share | Mt | Share | Mt | Share | Mt | Share | |
1978/1984 | −23.4 | −23.8 | −2 | −2.0 | 5.5 | 5.6 | 118.2 | 120.1 | 98.4 | 100 |
1984/1998 | 3.6 | 3.4 | −7.4 | −7.0 | 10 | 9.5 | 98.7 | 94.0 | 105 | 100 |
1998/2003 | −63.2 | 77.5 | −3.3 | 4.0 | 0.7 | −0.9 | −15.8 | 19.4 | −81.6 | 100 |
2003/2013 | 59.9 | 35.0 | −0.3 | −0.2 | 31.2 | 18.2 | 80.5 | 47.0 | 171.2 | 100 |
1978/2013 | −30.7 | −10.5 | −13.6 | −4.6 | 57.4 | 19.6 | 279.6 | 95.5 | 292.8 | 100 |
Items | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|---|---|---|---|
Relative Yield | 2.82 | 3.10 | 3.29 | 3.55 | 3.26 | 3.23 | 3.08 | 3.13 | 3.24 | 3.42 |
Relative Price | 0.41 | 0.43 | 0.50 | 0.36 | 0.39 | 0.45 | 0.48 | 0.52 | 0.47 | 0.46 |
Relative Profit | 1.31 | 1.37 | 1.70 | 1.30 | 1.19 | 1.48 | 1.54 | 1.84 | 1.68 | 1.77 |
Crops | Rice | Maize | Wheat | Soybeans |
---|---|---|---|---|
China, t/ha | 6.74 | 5.97 | 3.52 | 1.80 |
Major Producer (MP), t/ha | -- | 9.48 | 7.40 | 2.95 |
World’s Highest (WH), t/ha | 10.02 | 28.79 | 8.93 | 6.25 |
China/MP, % | -- | 62.92 | 47.58 | 60.79 |
China/WH, % | 67.25 | 20.72 | 39.43 | 28.73 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Baležentis, T.; Cao, L.; Zhu, J.; Kriščiukaitienė, I.; Melnikienė, R. Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach. Sustainability 2016, 8, 1198. https://doi.org/10.3390/su8121198
Li T, Baležentis T, Cao L, Zhu J, Kriščiukaitienė I, Melnikienė R. Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach. Sustainability. 2016; 8(12):1198. https://doi.org/10.3390/su8121198
Chicago/Turabian StyleLi, Tianxiang, Tomas Baležentis, Lijuan Cao, Jing Zhu, Irena Kriščiukaitienė, and Rasa Melnikienė. 2016. "Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach" Sustainability 8, no. 12: 1198. https://doi.org/10.3390/su8121198
APA StyleLi, T., Baležentis, T., Cao, L., Zhu, J., Kriščiukaitienė, I., & Melnikienė, R. (2016). Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach. Sustainability, 8(12), 1198. https://doi.org/10.3390/su8121198