Potential Release of Phosphorus by Runoff Loss and Stabilization of Arsenic and Cadmium in Mining-Contaminated Soils with Exogenous Phosphate Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Determination of Basic Soil Properties
2.2. Experimental Design
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Characteristics
3.2. Effect of Phosphate Fertilizers on P, As, and Cd in the Runoff Phase
3.3. Loss of P and Migration of As and Cd in Sedimentary Phases
3.3.1. Contents of P, As, and Cd in Sedimentary Phases
3.3.2. The ERs of As and Cd in Sedimentary Phases
3.4. Particle Size Distribution of Sedimentary Phase and Relationship Between P, As, and Cd Stability
3.5. Speciation Distribution of Elements in Sedimentary Phase and the Effect of P on the Stability of As and Cd
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Chen, Y.; Yue, X.; Ren, D.; Liu, Y.; Yang, K. Identification and Hazard Analysis of Heavy Metal Sources in Agricultural Soils in Ancient Mining Areas: A Quantitative Method Based on the Receptor Model and Risk Assessment. J. Hazard. Mater. 2023, 445, 130528. [Google Scholar] [CrossRef] [PubMed]
- García-Carmona, M.; Romero-Freire, A.; Sierra Aragón, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. Evaluation of Remediation Techniques in Soils Affected by Residual Contamination with Heavy Metals and Arsenic. J. Environ. Manag. 2017, 191, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Ran, H.; Deng, X.; Guo, Z.; Hu, Z.; An, Y.; Xiao, X.; Yi, L.; Xu, R. Pollution Characteristics and Environmental Availability of Toxic Elements in Soil from an Abandoned Arsenic-Containing Mine. Chemosphere 2022, 303, 135189. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, K.; Liu, S.; Adhikari, B.; Chen, J. Improvement of Gelation Properties of Soy Protein Isolate Emulsion Induced by Calcium Cooperated with Magnesium. J. Food Eng. 2019, 244, 32–39. [Google Scholar] [CrossRef]
- Kan, X.; Dong, Y.; Feng, L.; Zhou, M.; Hou, H. Contamination and Health Risk Assessment of Heavy Metals in China’s Lead–Zinc Mine Tailings: A Meta–Analysis. Chemosphere 2021, 267, 128909. [Google Scholar] [CrossRef]
- Loh, M.M.; Sugeng, A.; Lothrop, N.; Klimecki, W.; Cox, M.; Wilkinson, S.T.; Lu, Z.; Beamer, P.I. Multimedia Exposures to Arsenic and Lead for Children near an Inactive Mine Tailings and Smelter Site. Environ. Res. 2016, 146, 331–339. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Zhang, M.; Han, W.; Yuan, Z.; Zhong, X.; Yu, L.; Ji, H. Treatment of Cd(II) and As(V) Co-Contamination in Aqueous Environment by Steel Slag-Biochar Composites and Its Mechanism. J. Hazard. Mater. 2023, 447, 130784. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Wei, C.; Wang, M.; Han, W.; Yuan, Z.; Ji, H. Effects of Exogenous Phosphates on Speciation and Bioavailability of Arsenic and Cadmium in Farmland Soils. J. Soils Sediments 2023, 23, 1832–1843. [Google Scholar] [CrossRef]
- Zhao, F.J.; Wang, P. Arsenic and Cadmium Accumulation in Rice and Mitigation Strategies. Plant Soil 2020, 446, 1–21. [Google Scholar] [CrossRef]
- Han, F.; An, S.Y.; Liu, L.; Ma, L.Q.; Wang, Y.; Yang, L. Simultaneous Enhancement of Soil Properties along with Water-Holding and Restriction of Pb–Cd Mobility in a Soil-Plant System by the Addition of a Phosphorus-Modified Biochar to the Soil. J. Environ. Manag. 2023, 345, 118827. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, H.; Malik, Z.; Xiao, Q.; Lu, S. Comparative Study on the Potential Risk of Contaminated-Rice Straw, Its Derived Biochar and Phosphorus Modified Biochar as an Amendment and Their Implication for Environment. Environ. Pollut. 2022, 293, 118515. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.O.; Lee, D.K.; Kim, P.J. Feasibility of Phosphate Fertilizer to Immobilize Cadmium in a Field. Chemosphere 2008, 70, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, X.; Lai, L.; Li, H.; Zhang, X.; Chen, H.; Xie, L. Phosphorus Fertilization Regimes and Rates Alter Cd Extractability in Rhizospheric Soils and Uptake in Maize (Zea mays L.). Chemosphere 2022, 298, 134288. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, M.; Chen, L.; Ji, L.; Zhao, Z.; Wang, L.; Wei, L.; Zhang, Y. Growth and Elemental Uptake of Trifolium Repens in Response to Biochar Addition, Arbuscular Mycorrhizal Fungi and Phosphorus Fertilizer Applications in Low-Cd-Polluted Soils. Environ. Pollut. 2020, 260, 113761. [Google Scholar] [CrossRef]
- Deng, X.; Chen, Y.; Yang, Y.; Lu, L.; Yuan, X.; Zeng, H.; Zeng, Q. Cadmium Accumulation in Rice (Oryza sativa L.) Alleviated by Basal Alkaline Fertilizers Followed by Topdressing of Manganese Fertilizer. Environ. Pollut. 2020, 262, 114289. [Google Scholar] [CrossRef]
- Azzi, V.; Kanso, A.; Kazpard, V.; Kobeissi, A.; Lartiges, B.; El Samrani, A. Lactuca sativa Growth in Compacted and Non-Compacted Semi-Arid Alkaline Soil under Phosphate Fertilizer Treatment and Cadmium Contamination. Soil Tillage Res. 2017, 165, 1–10. [Google Scholar] [CrossRef]
- Seshadri, B.; Bolan, N.S.; Wijesekara, H.; Kunhikrishnan, A.; Thangarajan, R.; Qi, F.; Matheyarasu, R.; Rocco, C.; Mbene, K.; Naidu, R. Phosphorus-Cadmium Interactions in Paddy Soils. Geoderma 2016, 270, 43–59. [Google Scholar] [CrossRef]
- Chen, X.X.; Liu, Y.M.; Zhao, Q.Y.; Cao, W.Q.; Chen, X.P.; Zou, C.Q. Health Risk Assessment Associated with Heavy Metal Accumulation in Wheat after Long-Term Phosphorus Fertilizer Application. Environ. Pollut. 2020, 262, 114348. [Google Scholar] [CrossRef]
- Dai, M.; Liu, W.; Hong, H.; Lu, H.; Liu, J.; Jia, H.; Yan, C. Exogenous Phosphorus Enhances Cadmium Tolerance by Affecting Cell Wall Polysaccharides in Two Mangrove Seedlings Avicennia marina (Forsk.) Vierh and Kandelia obovata (S., L.) Yong Differing in Cadmium Accumulation. Mar. Pollut. Bull. 2018, 126, 86–92. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, W.; Lu, G.; Fan, C.; Tao, X.; Ye, H.; Xie, Y.; Shi, Z.; Yi, X.; Dang, Z. Effect of Phosphate on Amorphous Iron Mineral Generation and Arsenic Behavior in Paddy Soils. Sci. Total Environ. 2019, 657, 644–656. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Tan, W.; Li, W.; Feng, X.; Sparks, D.L. Characteristics of Phosphate Adsorption-Desorption onto Ferrihydrite: Comparison with Well-Crystalline Fe (Hydr)Oxides. Soil Sci. 2013, 178, 1–11. [Google Scholar] [CrossRef]
- Bolan, N.; Mahimairaja, S.; Kunhikrishnan, A.; Choppala, G. Phosphorus-Arsenic Interactions in Variable-Charge Soils in Relation to Arsenic Mobility and Bioavailability. Sci. Total Environ. 2013, 463–464, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.X.; Huang, D.Y.; Zhu, H.H.; Zhu, Q.H.; Wang, J.Y.; Luo, Z.C.; Xu, C.; Shen, X.; He, Y.B. Effect of Rice Straw Mulching on Migration and Transportation of Cd, Cu, Zn, and Ni in Surface Runoff under Simulated Rainfall. J. Soils Sediments 2016, 16, 2021–2029. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Gruau, G.; Couic, E.; Cotinet, P.; Li, Q. Conservation Practices Modify Soil Phosphorus Sorption Properties and the Composition of Dissolved Phosphorus Losses during Runoff. Soil Tillage Res. 2022, 220, 105353. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Johnson, L.T.; Sharpley, A.N.; Smith, D.R.; Baker, D.B.; Bruulsema, T.W.; Confesor, R. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices? J. Environ. Qual. 2017, 46, 123–132. [Google Scholar] [CrossRef]
- Wu, L.; Peng, M.; Qiao, S.; Ma, X. Assessing Impacts of Rainfall Intensity and Slope on Dissolved and Adsorbed Nitrogen Loss under Bare Loessial Soil by Simulated Rainfalls. Catena 2018, 170, 51–63. [Google Scholar] [CrossRef]
- Ma, X.; Yang, J.; Zhou, X.; Wu, H.T.; Xiong, Q.; Li, Y. Transport of Phosphorus in Runoff and Sediment with Surface Runoff from Bare Purple Soil during Indoor Simulated Rainfall. J. Mt. Sci. 2022, 19, 2333–2345. [Google Scholar] [CrossRef]
- Mng’ong’o, M.; Munishi, L.K.; Blake, W.; Ndakidemi, P.A.; Comber, S.; Hutchinson, T.H. Characterization of Soil Phosphate Status, Sorption and Saturation in Paddy Wetlands in Usangu Basin-Tanzania. Chemosphere 2021, 278, 130466. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Wang, C.; Walter, M.T. An Investigation of the Effects of Humic Acid on Soil Erosion and Loss of Phosphorus from Soil to Runoff: Experiment and Modeling. Geoderma 2022, 427, 116121. [Google Scholar] [CrossRef]
- Shigaki, F.; Sharpley, A.; Prochnow, L.I. Rainfall Intensity and Phosphorus Source Effects on Phosphorus Transport in Surface Runoff from Soil Trays. Sci. Total Environ. 2007, 373, 334–343. [Google Scholar] [CrossRef]
- Khomenko, O.; Fenton, O.; Leahy, J.J.; Daly, K. Changes in Phosphorus Turnover When Soils under Long-Term P Management Are Amended with Bio-Based Fertiliser. Geoderma 2023, 430, 116288. [Google Scholar] [CrossRef]
- Mignardi, S.; Corami, A.; Ferrini, V. Evaluation of the Effectiveness of Phosphate Treatment for the Remediation of Mine Waste Soils Contaminated with Cd, Cu, Pb, and Zn. Chemosphere 2012, 86, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Nie, K.; Arinzechi, C.; Li, J.; Liao, Q.; Si, M.; Yang, Z.; Li, Q.; Yang, W. Cooperative Effect of Slow-Release Ferrous and Phosphate for Simultaneous Stabilization of As, Cd and Pb in Soil. J. Hazard. Mater. 2023, 452, 131232. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liang, T.; Wang, L.; Liu, Y.; Wang, Y.; Zhang, C. The Effects of Fertilizer Applications on Runoff Loss of Phosphorus. Environ. Earth Sci. 2013, 68, 1313–1319. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zhao, S.; Li, D.; Xi, H.; Wang, Y. Arsenic in Soils Contaminated by Arsenic-Containing Chemical Weapons in a Site of Jilin, China: Fraction and Bioaccessibility. Environ. Sci. Pollut. Res. 2022, 29, 28957–28972. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic Fractionation in Soils Using an Improved Sequential Extraction Procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Shen, B.; Wang, X.; Zhang, Y.; Zhang, M.; Wang, K.; Xie, P.; Ji, H. The Optimum PH and Eh for Simultaneously Minimizing Bioavailable Cadmium and Arsenic Contents in Soils under the Organic Fertilizer Application. Sci. Total Environ. 2020, 711, 135229. [Google Scholar] [CrossRef]
- Joshi, S.R.; Li, X.; Jaisi, D.P. Transformation of Phosphorus Pools in an Agricultural Soil: An Application of Oxygen-18 Labeling in Phosphate. Soil Sci. Soc. Am. J. 2016, 80, 69–78. [Google Scholar] [CrossRef]
- Lei, X.T.; Zhang, H.; Chen, M.; Guo, L.; Zhang, X.G.; Jiang, Z.H.; Blake, R.E.; Chen, Z.G. The Efficiency of Sequential Extraction of Phosphorus in Soil and Sediment: Insights from the Oxygen Isotope Ratio of Phosphate. J. Soils Sediments 2020, 20, 1332–1343. [Google Scholar] [CrossRef]
- Lei, X.T.; Chen, M.; Guo, L.; Zhang, X.G.; Jiang, Z.H.; Chen, Z.G. Diurnal Variations in the Content and Oxygen Isotope Composition of Phosphate Pools in a Subtropical Agriculture Soil. Geoderma 2019, 337, 863–870. [Google Scholar] [CrossRef]
- Shi, P.; Arter, C.; Liu, X.; Keller, M.; Schulin, R. Soil Aggregate Stability and Size-Selective Sediment Transport with Surface Runoff as Affected by Organic Residue Amendment. Sci. Total Environ. 2017, 607–608, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ye, Z.; Liu, B.; Zeng, X.; Fu, S.; Lu, B. Nitrogen Enrichment in Runoff Sediments as Affected by Soil Texture in Beijing Mountain Area. Environ. Monit. Assess. 2014, 186, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Luo, X.; Zhang, W.; Wu, B.; Han, F.; Lin, Z.; Wang, X. Enrichment Behavior and Transport Mechanism of Soil-Bound PAHs during Rainfall-Runoff Events. Environ. Pollut. 2012, 171, 85–92. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil environmental quality—Risk control standard for soil contamination of agricultural land. National Standard of the People’s Republic of China: Beijing, China, 2018.
- Li, X.; Liu, N.; Meng, W.; He, J.; Wu, P. Accumulation and Health Risk Assessment of Heavy Metal(Loid)s in Soil-Crop Systems from Central Guizhou, Southwest China. Agriculture 2022, 12, 981. [Google Scholar] [CrossRef]
- Shi, P.; Schulin, R. Erosion-Induced Losses of Carbon, Nitrogen, Phosphorus and Heavy Metals from Agricultural Soils of Contrasting Organic Matter Management. Sci. Total Environ. 2018, 618, 210–218. [Google Scholar] [CrossRef]
- Wang, L.; Liang, T.; Chong, Z.; Zhang, C. Effects of Soil Type on Leaching and Runoff Transport of Rare Earth Elements and Phosphorous in Laboratory Experiments. Environ. Sci. Pollut. Res. 2011, 18, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wen, Q.; Chen, Z. Effect of KH2PO4-Modified Biochar on Immobilization of Cr, Cu, Pb, Zn and as during Anaerobic Digestion of Swine Manure. Bioresour. Technol. 2021, 339, 125570. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental quality standards for surface water. National Standard of the People’s Republic of China: Beijing, China, 2002.
- Jiang, K.; Wu, B.; Wang, C.; Ran, Q. Ecotoxicological Effects of Metals with Different Concentrations and Types on the Morphological and Physiological Performance of Wheat. Ecotoxicol. Environ. Saf. 2019, 167, 345–353. [Google Scholar] [CrossRef]
- Zhang, G.H.; Guo-Bin, L.; Wang, G.L.; Wang, Y.X. Effects of Vegetation Cover and Rainfall Intensity on Sediment-Bound Nutrient Loss, Size Composition and Volume Fractal Dimension of Sediment Particles. Pedosphere 2011, 21, 676–684. [Google Scholar] [CrossRef]
- Wang, L.; Liang, T.; Zhang, Q. Laboratory Experiments of Phosphorus Loss with Surface Runoff during Simulated Rainfall. Environ. Earth Sci. 2013, 70, 2839–2846. [Google Scholar] [CrossRef]
- Sharma, R.; Bella, R.W.; Wong, M.T.F. Dissolved Reactive Phosphorus Played a Limited Role in Phosphorus Transport via Runoff, Throughflow and Leaching on Contrasting Cropping Soils from Southwest Australia. Sci. Total Environ. 2017, 577, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhou, Y.Q.; Liang, C.H. Evaluation of Phosphate Fertilizers for the Immobilization of Cd in Contaminated Soils. PLoS ONE 2015, 10, e0124022. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.H.; Prochnow, L.I.; Tu, S.; Snyder, C.S. Agronomic and Environmental Aspects of Phosphate Fertilizers Varying in Source and Solubility: An Update Review. Nutr. Cycl. Agroecosystems 2011, 89, 229–255. [Google Scholar] [CrossRef]
- Gong, H.; Meng, F.; Wang, G.; Hartmann, T.E.; Feng, G.; Wu, J.; Jiao, X.; Zhang, F. Toward the Sustainable Use of Mineral Phosphorus Fertilizers for Crop Production in China: From Primary Resource Demand to Final Agricultural Use. Sci. Total Environ. 2022, 804, 150183. [Google Scholar] [CrossRef]
- Thawornchaisit, U.; Polprasert, C. Evaluation of Phosphate Fertilizers for the Stabilization of Cadmium in Highly Contaminated Soils. J. Hazard. Mater. 2009, 165, 1109–1113. [Google Scholar] [CrossRef]
- Proffitt, A.P.B.; Rose, C.W.; Hairsine, P.B. Rainfall Detachment and Deposition: Experiments with Low Slopes and Significant Water Depths. Soil Sci. Soc. Am. J. 1991, 55, 325. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. The Influence of Raindrop Induced Saltation on Particle Size Distributions in Sediment Discharged by Rain-Impacted Flow on Planar Surfaces. Catena 2009, 78, 2–11. [Google Scholar] [CrossRef]
- Qian, J.; Shan, X.Q.; Wang, Z.J.; Tu, Q. Distribution and Plant Availability of Heavy Metals in Different Particle-Size Fractions of Soil. Sci. Total Environ. 1996, 187, 131–141. [Google Scholar] [CrossRef]
- Sha, H.; Li, J.; Wang, L.; Nong, H.; Wang, G.; Zeng, T. Preparation of Phosphorus-Modified Biochar for the Immobilization of Heavy Metals in Typical Lead-Zinc Contaminated Mining Soil: Performance, Mechanism and Microbial Community. Environ. Res. 2023, 218, 114769. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Sun, Y.; Tsang, D.C.W.; Cheng, K.; Ok, Y.S. Assembling Biochar with Various Layered Double Hydroxides for Enhancement of Phosphorus Recovery. J. Hazard. Mater. 2019, 365, 665–673. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Li, X.; Sun, Y.; Ma, J.; Lei, M.; Weng, L. Influence of Calcium and Phosphate on PH Dependency of Arsenite and Arsenate Adsorption to Goethite. Chemosphere 2018, 199, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhou, X.; Peng, Y.; Zheng, Z.; Gao, X.; Ma, Y.; Chen, S.; Cui, S.; Fan, B.; Chen, Q. Effects of Phosphorus-Containing Material Application on Soil Cadmium Bioavailability: A Meta-Analysis. Environ. Sci. Pollut. Res. 2022, 29, 42372–42383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ke, S.; Xia, M.; Bi, X.; Shao, J.; Zhang, S.; Chen, H. Effects of Phosphorous Precursors and Speciation on Reducing Bioavailability of Heavy Metal in Paddy Soil by Engineered Biochars. Environ. Pollut. 2021, 285, 117459. [Google Scholar] [CrossRef] [PubMed]
Properties | pH (H2O) | Moisture content (%) | Clay (<0.002 mm) (%) | Silt (0.002–0.02 mm) (%) | Sand (>0.02 mm) (%) | Total P (g·kg−1) | Available P (mg·kg−1) | Total As (mg·kg−1) | Total Cd (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
Value | 7.63 (±0.03) | 25.19 (±3.28) | 6.2 | 43.82 | 49.97 | 1.02 (±0.03) | 24.98 (±0.17) | 1429.57 (±57.23) | 43.93 (±2.36) |
Treatments | Control | PDP | SSP | GPR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall Times | 1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd |
Cumulative runoff (L) | 13.26 a | 12.61 abc | 13.20 a | 11.20 bc | 11.41 abc | 12.42 abc | 12.98 ab | 11.17 bc | 10.84 c | 10.92 c | 12.22 abc | 12.72 abc |
Dissolved P (mg·m−2) | 1.45 g | 0.02 h | 0.56 h | 6.46 d | 5.72 e | 6.40 de | 17.73 a | 14.23 b | 8.17 c | 2.57 f | 1.33 g | 1.88 fg |
Water–As (mg·m−2) | 0.14 f | 0.17 ef | 0.12 f | 0.77 d | 0.69 d | 0.70 d | 1.69 a | 1.27 b | 1.05 c | 0.25 e | 0.27 e | 0.19 ef |
Water–Cd (mg·m−2) | 0.07 cd | 0.07 cd | 0.06 d | 0.04 e | 0.04 e | 0.04 e | 0.18 a | 0.11 b | 0.06 d | 0.08 c | 0.08 c | 0.07 cd |
Sediment yield (g·m−2) | 234.31 d | 417.43 b | 388.00 b | 232.62 d | 320.49 c | 226.82 de | 238.25 d | 250.74 d | 166.57 f | 196.20 ef | 498.96 a | 88.99 g |
Particulate P (mg·m−2) | 181.65 g | 373.07 d | 351.19 de | 323.91 e | 507.40 b | 376.54 d | 451.20 c | 496.09 b | 332.80 e | 223.36 f | 565.74 a | 114.36 h |
Particulate As (mg·m−2) | 271.56 f | 477.11 b | 396.20 c | 258.74 fg | 365.58 d | 247.22 g | 298.51 e | 315.32 e | 195.26 h | 242.51 g | 609.27 a | 99.84 i |
Particulate Cd (mg·m−2) | 11.81 d | 17.22 b | 15.47 c | 10.10 ef | 11.25 d | 7.21 g | 11.10 de | 9.58 f | 6.02 h | 9.91 f | 20.56 a | 3.44 i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wei, C.; Yang, F.; Lai, Y.; Wang, X.; Wang, M.; Han, W.; Zhong, X.; Wang, J.; Ji, H.; et al. Potential Release of Phosphorus by Runoff Loss and Stabilization of Arsenic and Cadmium in Mining-Contaminated Soils with Exogenous Phosphate Fertilizers. Sustainability 2024, 16, 9783. https://doi.org/10.3390/su16229783
Zhang M, Wei C, Yang F, Lai Y, Wang X, Wang M, Han W, Zhong X, Wang J, Ji H, et al. Potential Release of Phosphorus by Runoff Loss and Stabilization of Arsenic and Cadmium in Mining-Contaminated Soils with Exogenous Phosphate Fertilizers. Sustainability. 2024; 16(22):9783. https://doi.org/10.3390/su16229783
Chicago/Turabian StyleZhang, Meng, Chaoyang Wei, Fen Yang, Yujian Lai, Xuemei Wang, Menglu Wang, Wei Han, Xinlian Zhong, Jian Wang, Hongbing Ji, and et al. 2024. "Potential Release of Phosphorus by Runoff Loss and Stabilization of Arsenic and Cadmium in Mining-Contaminated Soils with Exogenous Phosphate Fertilizers" Sustainability 16, no. 22: 9783. https://doi.org/10.3390/su16229783