Effects of High-Density Mixed Planting in Artificial Grassland on Microbial Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Sample Collection
2.2.2. High-Throughput Sequencing
2.2.3. Sequencing Data Processing
2.2.4. Statistical Analysis
3. Results and Analysis
3.1. Effects of Different Species Combinations on Soil Microbial Community Richness
3.2. Effects of Different Species Combinations on Soil Microbial Community Diversity
3.3. Effects of Different Species Combinations on Soil Microbial Community Structure
3.4. Differences in Soil Microbial Community Network
3.5. Effects of Different Community Structures on Soil Physical and Chemical Properties
3.6. Correlation Between Soil Physical and Chemical Properties and Microbial Communities
4. Discussion
4.1. The Community Structure of Artificial Grassland Affects the Composition of Microbial Community
4.2. The Microbial α Diversity Was Not Significantly Affected
4.3. Evolution Trend of Microbial Community in Alpine Grassland of Qinghai–Tibet Plateau
4.4. Soil Microbial Communities Are Also Regulated by Interspecific Networks
4.5. Interaction of Microbial Community Structure and Soil Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Ning, J.; Zhu, P.; Zheng, Y.; Zhai, J. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China. J. Geogr. Sci. 2021, 31, 518–534. [Google Scholar] [CrossRef]
- Ren, J. A brief discussion on the dynamics of grassland area in the world in the 1970s. Foreign Anim. Husb. Grassl. Grass 1983, 43–44. [Google Scholar]
- Prieto, I.; Violle, C.; Barre, P.; Durand, J.-L.; Ghesquiere, M.; Litrico, I. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 2015, 1, 15033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.P.; Gao, S.N.; Li, Z.X.; Xu, H.; Yang, H.; Yang, X.; Fan, H.; Su, Y.; Fornara, D.; Li, L. Shifts from complementarity to selection effects maintain high productivity in maize/legume intercrop** systems. J. Appl. Ecol. 2021, 58, 2603–2613. [Google Scholar] [CrossRef]
- Wu, G.L.; Yang, Z.; Cui, Z.; Liu, Y.; Fang, N.-F.; Shi, Z.-H. Mixed artificial grasslands with more roots improved mine soil infiltration capacity. J. Hydrol. 2016, 535, 54–60. [Google Scholar] [CrossRef]
- Liu, Q.; He, M.; Li, F.; Wang, X.L.; Xing, Y.F.; Li, S.Y.; Zhang, H.; Shi, J. Evaluation on Restoration Effects of Mixed Sowing Artificial Grasslands in Alpine Mining Area with Different Slope Aspects. Acta Agrestia Sin. 2023, 31, 2834. [Google Scholar]
- Lou, J.; Liu, Y.; Li, Y. Review of high-throughput sequencing techniques in studies of soil microbial diversity. Chin. Agric. Sci. Bull. 2014, 30, 256–260. [Google Scholar]
- Adomako, M.O.; Roiloa, S.; Yu, F.H. Potential roles of soil microorganisms in regulating the effect of soil nutrient heterogeneity on plant performance. Microorganisms 2022, 10, 2399. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Liang, W.; Liu, S. Rhizosphere microbiome: The emerging barrier in plant-pathogen interactions. Front. Microbiol. 2021, 12, 772420. [Google Scholar] [CrossRef]
- Benaissa, A. Rhizosphere: Role of bacteria to manage plant diseases and sustainable agriculture—A review. J. Basic Microbiol. 2024, 64, 2300361. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Wu, Y.; Zhang, L.; Cheng, J.; Wei, G.; Lin, Y. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities. Sci. Total Environ. 2018, 635, 598–606. [Google Scholar] [CrossRef]
- Lu, T.; Ke, M.; Peijnenburg, W.; Zhu, Y.; Zhang, M.; Sun, L.; Fu, Z.; Qian, H. Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage. J. Agric. Food Chem. 2018, 66, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; van Themaat, E.V.L.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Lavoie, M.; Jin, Y.; Xu, J.; Fu, Z.; Qian, H. Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. J. Environ. Sci. 2017, 51, 352–360. [Google Scholar] [CrossRef]
- Sun, R.; Yi, Z.; Fu, Y.; Liu, H. Dynamic changes in rhizosphere fungi in different developmental stages of wheat in a confined and isolated environment. Appl. Microbiol. Biotechnol. 2022, 106, 441–453. [Google Scholar] [CrossRef]
- Hou, S.; Ren, H.; Fan, F.; Zhao, M.; Zhou, W.; Zhou, B.; Li, C. The effects of plant density and nitrogen fertilization on maize yield and soil microbial communities in the black soil region of Northeast China. Geoderma 2023, 430, 116325. [Google Scholar] [CrossRef]
- Lamb, E.G.; Kennedy, N.; Siciliano, S.D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 2011, 338, 483–495. [Google Scholar] [CrossRef]
- Tao, Z.W.; Bu, H.Y.; Li, J.J.; Jia, P.; Qi, W.; Liu, K.; Du, G.Z. Effects of different artificial planting schemes on invasive weeds. Glob. Ecol. Conserv. 2021, 28, e01651. [Google Scholar] [CrossRef]
- Monteiro MC, O.; Koper MT, M. Measuring local pH in electrochemistry. Curr. Opin. Electrochem. 2021, 25, 100649. [Google Scholar] [CrossRef]
- Gerenfes, D.; Giorgis, A.; Negasa, G. Comparison of organic matter determination methods in soil by loss on ignition and potassium dichromate method. Int. J. Hortic. Food Sci. 2022, 4, 49–53. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Sci. Soc. Am. J. 2001, 65, 1284–1292. [Google Scholar] [CrossRef]
- Duan, Y.; Li, D.; Li, Z.; Luo, J.; Sun, X.; Zhang, H.; Li, Y.; Liu, F.; Zhang, K.; Hu, Y.; et al. Enhancing phosphorus bioavailability in lateritic red soil: Combining Bacillus subtilis inoculated microbial organic fertilizer with reduced chemical input. Soil Use Manag. 2024, 40, e12987. [Google Scholar] [CrossRef]
- Kolterman, D.W.; Truog, E. Determination of fixed soil potassium. Soil Sci. Soc. Am. J. 1953, 17, 347–351. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An overview of the Kjeldahl method of nitrogen determination Part, I.I. Sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Li, J.; Lin, S.; Jia, X.; Zhang, Q.; Ye, J.; Wang, H.; Wu, Z. Study on the effect of pH on rhizosphere soil fertility and the aroma quality of tea trees and their interactions. Agriculture 2023, 13, 1739. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Tang, M. Arbuscular mycorrhizal fungi diversity associated with two halophytes Lycium barbarum L. and Elaeagnus angustifolia L. in Ningxia, China. Arch. Agron. Soil Sci. 2017, 63, 796–806. [Google Scholar] [CrossRef]
- Schloss, P.D. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput. Biol. 2010, 6, e1000844. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Spain, A.M.; Krumholz, L.R.; Elshahed, M.S. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009, 3, 992–1000. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef]
- Verzeaux, J.; Alahmad, A.; Habbib, H.; Nivelle, E.; Roger, D.; Lacoux, J.; Decocq, G.; Hirel, B.; Catterou, M.; Spicher, F.; et al. Cover crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil. Geoderma 2016, 281, 49–57. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Z.; Chen, C.; Jia, Z. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations. Biogeosciences 2017, 14, 2101–2111. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Wang, Z.; Wang, W.; Jia, Y.; Tian, S. Impacts of artificially planted vegetation on the ecological restoration of movable sand dunes in the Mugetan Desert, northeastern Qinghai-Tibet Plateau. Int. J. Sediment Res. 2017, 32, 277–287. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef]
- Yuan, J.; Wen, T.; Zhang, H.; Zhao, M.; Penton, C.R.; Thomashow, L.S.; Shen, Q. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J. 2020, 14, 2936–2950. [Google Scholar] [CrossRef]
- Prober, S.M.; Leff, J.W.; Bates, S.T.; Borer, E.T.; Firn, J.; Harpole, W.S.; Lind, E.M.; Seabloom, E.W.; Adler, P.B.; Bakker, J.D.; et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 2015, 18, 85–95. [Google Scholar] [CrossRef]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From saprophytes to endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263. [Google Scholar] [CrossRef]
- Koskella, B.; Hall, L.J.; Metcalf, C.J.E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 2017, 1, 1606–1615. [Google Scholar] [CrossRef]
- Belin, B.J.; Busset, N.; Giraud, E.; Molinaro, A.; Silipo, A.; Newman, D.K. Hopanoid lipids: From membranes to plant–bacteria interactions. Nat. Rev. Microbiol. 2018, 16, 304. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Yao, Q.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol. Biochem. 2016, 95, 212–222. [Google Scholar] [CrossRef]
- Romanowicz, K.J.; Freedman, Z.B.; Upchurch, R.A.; Argiroff, W.A.; Zak, D.R. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: The influence of pH and soil moisture. FEMS Microbiol. Ecol. 2016, 92, fiw149. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Su, B.; Zhang, Z.; Dao, R. Study on microbial diversity of oat rhizosphere soil in different regions of alpine region. J. Grassl. 2020, 28, 358–366. [Google Scholar]
- Bartram, A.K.; Jiang, X.; Lynch, M.D.J.; Masella, A.P.; Nicol, G.W.; Dushoff, J.; Neufeld, J.D. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiol. Ecol. 2014, 87, 403–415. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Holloway, J.M.; Smith, D.B.; Goldhaber, M.B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, D.; Wylie, B.; Grace, J.B. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology 2017, 98, 1957–1967. [Google Scholar] [CrossRef]
Measurement Content | Method | Method Source | Instrument |
---|---|---|---|
pH | Electrode method | [20] | pHS-25 Acidity Meter |
SOM | Potassium dichromate sulfuric acid oxidation heating method | [21] | ———— |
Alkaline Hydrolyzed Nitrogen | Alkaline Diffusion Method | [22] | 28YX-500 type electric heating constant temperature incubator |
Available phosphorus | Sodium bicarbonate extraction—molybdenum antimony anti-colorimetric method | [23] | Cary50 UV-Vis Spectrophotometer |
Available potassium | Ammonium acetate leaching—flame photometry | [24] | Sherwood M410 Flame Photometer |
Total nitrogen | Kjeldahl method | [25] | Kjeltec8200 semi-automatic nitrogen analyzer |
Total Phosphorus | Alkali Fusion-Molybdenum Antimony Anti-Colorimetry | [26] | Cary50 UV-Vis Spectrophotometer |
Total Potassium | Alkaline fusion-flame photometry | [27] | Sherwood M410 Flame Photometer |
To Deal With | Bacterial Gene Sequence | Fungal Gene Sequence |
---|---|---|
T22 | 51,062 + 3103 a | 72,557 + 698 a |
T1 | 48,739 + 885 a | 71,844 + 1207 a |
T6 | 49,059 + 1693 a | 70,195 + 2704 ab |
T7 | 48,442 + 394 a | 70,846 + 1366 ab |
T23 | 46,519 + 2930 a | 60,815 + 6501 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Li, J.; Li, H.; Du, G. Effects of High-Density Mixed Planting in Artificial Grassland on Microbial Community. Sustainability 2024, 16, 9212. https://doi.org/10.3390/su16219212
Tao Z, Li J, Li H, Du G. Effects of High-Density Mixed Planting in Artificial Grassland on Microbial Community. Sustainability. 2024; 16(21):9212. https://doi.org/10.3390/su16219212
Chicago/Turabian StyleTao, Ziwei, Jinjuan Li, Hui Li, and Guozhen Du. 2024. "Effects of High-Density Mixed Planting in Artificial Grassland on Microbial Community" Sustainability 16, no. 21: 9212. https://doi.org/10.3390/su16219212