One-Step-Modified Biochar by Natural Anatase for Eco-Friendly Cr (VI) Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar and TBC Composites
2.2. Characterization of TBC Composites
2.3. Electrochemical Characteristic Analysis of TBC Composites
2.4. Analysis of Cr (VI) Degradation Property
2.5. pH Gradient Degradation
2.6. Detection of Ti Leaching from TBC
3. Results and Discussion
3.1. Characterization of TiO2–Biochar (TBC)
3.1.1. Morphometric Analysis of TBC
3.1.2. Mineralogical Analysis of TBC
3.1.3. Elemental Valence Analysis of TBC
3.2. Cr (VI) Degradation of Different Materials
3.3. Effect of pH
3.4. Influence of Sacrificial Agents on the Photocatalytic Process of TBC
3.5. Photoelectrochemical Properties of TBC
3.6. Cyclicity and Stability of TBC
3.7. Mechanism of Cr (VI) Degradation in TBC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drinčić, A.; Zuliani, T.; Ščančar, J.; Milačič, R. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry. Sci. Total Environ. 2018, 637–638, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-H.; Dong, M.; Li, R.; Cui, Y.-Q.; Xie, G.-X.; Wang, X.-X.; Long, Y.-Z. Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydr. Polym. 2021, 253, 117200. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Wang, J.; Wu, Y.; Zhao, S.; Wang, Z. Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light. Chem. Eng. J. 2020, 380, 122600. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Dytłow, S.; Górka-Kostrubiec, B. Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environ. Geochem. Health 2020, 43, 521–535. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, Y.; Moon, H.-B.; Ra, K. Characteristics of metal pollution and multi-isotopic signatures for C, Cu, Zn, and Pb in coastal sediments from special management areas in Korea. Mar. Pollut. Bull. 2023, 188, 114642. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Bai, L.; Tan, Y.; Li, L.; Song, F.; Wang, Y. β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: Fabrication, performance and mechanisms. Chem. Eng. J. 2019, 372, 1007–1018. [Google Scholar] [CrossRef]
- Djouider, F. Radiolytic formation of non-toxic Cr(III) from toxic Cr(VI) in formate containing aqueous solutions: A system for water treatment. J. Hazard. Mater. 2012, 223–224, 104–109. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Z.; Xu, S.; Wang, H.; Lu, W. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol. 2015, 190, 388–394. [Google Scholar] [CrossRef]
- Çimen, A. Removal of chromium from wastewater by reverse osmosis. Russ. J. Phys. Chem. A 2015, 89, 1238–1243. [Google Scholar] [CrossRef]
- Deng, S.; Liu, X.; Liao, J.; Lin, H.; Liu, F. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions. Chem. Eng. J. 2019, 375, 122086. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Almeida, J.C.; Cardoso, C.E.D.; Tavares, D.S.; Freitas, R.; Trindade, T.; Vale, C.; Pereira, E. Chromium removal from contaminated waters using nanomaterials—A review. TrAC Trends Anal. Chem. 2019, 118, 277–291. [Google Scholar] [CrossRef]
- Abdollahi, N.; Moussavi, G.; Giannakis, S. A review of heavy metals’ removal from aqueous matrices by Metal-Organic Frameworks (MOFs): State-of-the art and recent advances. J. Environ. Chem. Eng. 2022, 10, 107394. [Google Scholar] [CrossRef]
- Wang, W.; Wang, A. Perspectives on green fabrication and sustainable utilization of adsorption materials for wastewater treatment. Chem. Eng. Res. Des. 2022, 187, 541–548. [Google Scholar] [CrossRef]
- Dhanjai; Sinha, A.; Zhao, H.; Chen, J.; Mugo, S.M. Determination of Chemical Oxygen Demand: An Analytical Approach. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Liu, P.; Lin, X.; Zhu, H.; Fang, C.; Li, W.; Liu, C. Engineering Fe–N–C sites onto Fe nanoparticles for synergistically boosting Cr(vi) reduction: Performance, mechanism, and applications. J. Mater. Chem. A 2024, 12, 7817–7825. [Google Scholar] [CrossRef]
- Yang, J.; Liang, Y.; Li, K.; Yang, G.; Yin, S. One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability. Appl. Catal. B Environ. 2019, 250, 17–30. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI). Appl. Catal. B Environ. 2018, 232, 164–174. [Google Scholar] [CrossRef]
- Zheng, J.; Lei, Z. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B Environ. 2018, 237, 1–8. [Google Scholar] [CrossRef]
- Anandkumar, M.; Kannan, P.K.; Sudarsan, S.; Trofimov, E.A. High-entropy oxide (CeGdHfPrZr)O2 nanoparticles as reusable photocatalyst for wastewater remediation. Surf. Interfaces 2024, 51, 104815. [Google Scholar] [CrossRef]
- Anandkumar, M.; Kannan, P.K.; Sudarsan, S.; Uchaev, D.A.; Trofimov, E.A. Reusable high-entropy oxide environmental photocatalyst towards toxic Cr(VI) reduction with tailored bandgap via solution combustion synthesis. Adv. Powder Technol. 2024, 35, 104429. [Google Scholar] [CrossRef]
- Guo, W.; Wei, W.; Guo, Z.; Li, Y.; Hou, F.; Wei, A. Hydrothermal carbonization carbon induced synthesis of flower-like C/Bi/BiOI heterojunction with heightened photocatalytic Cr(VI) reduction. Appl. Surf. Sci. 2024, 651, 159217. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, M.; Huang, Q.; Mao, Y.; Jia, J.; Zeng, X.; Dong, Y.; Liao, J.; Chen, X.; Yao, X.; et al. Construction of S-scheme CuInS2/ZnIn2S4 heterostructures for enhanced photocatalytic activity towards Cr(VI) removal and antibiotics degradation. Chemosphere 2024, 352, 141351. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Yang, Y.; Wang, X.; Zhou, T.; Yin, G.; Jia, F.; Liu, B. 1D 2D and 3D anatase TiO2 sensitized with BNQDs for sensitive acetone detection. Surf. Interfaces 2023, 38, 102847. [Google Scholar] [CrossRef]
- Mahmoud, Z.H.; Hamrouni, A.; Kareem, A.B.; Mostafa, M.A.; Jalil alhakim, Z.; Majeed, A.H. Synthesis and characterization of chitosan sheet modified by varied weight ratio of anatase (TiO2) nano mixture with Cr(VI) adsorbing. Kuwait J. Sci. 2023, 50, 290–299. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Nian, P.; Ma, H.; Hou, J.; Zhang, Y. Facile preparation of high-performance hydrochar/TiO2 heterojunction visible light photocatalyst for treating Cr(VI)-polluted water. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132775. [Google Scholar] [CrossRef]
- Acharya, R.; Naik, B.; Parida, K. Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 2018, 9, 1448–1470. [Google Scholar] [CrossRef]
- Jaffari, G.H.; Ali, W.; Ain, Q.u.; Gul, M.; Hassan, Q.u.; Ali, A.; Wasiq, M.F.; Zhou, J.-P. Morphology and optical studies of Cr doped TiO2 and Mixed-Halide Perovskite coated rutile TiO2 nanorods. J. Alloys Compd. 2019, 773, 1154–1164. [Google Scholar] [CrossRef]
- Li, K.; Huang, Z.; Zhu, S.; Luo, S.; Yan, L.; Dai, Y.; Guo, Y.; Yang, Y. Removal of Cr(VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems. Appl. Catal. B Environ. 2019, 243, 386–396. [Google Scholar] [CrossRef]
- Wang, C.-C.; Du, X.-D.; Li, J.; Guo, X.-X.; Wang, P.; Zhang, J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Appl. Catal. B Environ. 2016, 193, 198–216. [Google Scholar] [CrossRef]
- Fatimah, I.; Nurillahi, R.; Sahroni, I.; Muraza, O. TiO2-pillared saponite and photosensitization using a ruthenium complex for photocatalytic enhancement of the photodegradation of bromophenol blue. Appl. Clay Sci. 2019, 183, 105302. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, G.; Zhang, Z. TiO2-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects. Environ. Int. 2020, 136, 105453. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, C.; Wang, H.; Zhou, S.; Komarneni, S. Fabrication and characterization of TiO2/Sepiolite nanocomposites doped with rare earth ions. Mater. Lett. 2018, 228, 100–103. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Lu, G.; Tu, Y.; Wu, J. Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution. Mater. Sci. Semicond. Process. 2015, 39, 362–370. [Google Scholar] [CrossRef]
- Zhao, J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of selective adsorption of Cr species via modification of pine biomass. Sci. Total Environ. 2021, 756, 143816. [Google Scholar] [CrossRef]
- Silva, C.P.; Pereira, D.; Calisto, V.; Martins, M.A.; Otero, M.; Esteves, V.I.; Lima, D.L.D. Biochar-TiO2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents. J. Environ. Manag. 2021, 294, 112937. [Google Scholar] [CrossRef]
- Laohhasurayotin, K.; Pookboonmee, S. Multifunctional properties of Ag/TiO2/bamboo charcoal composites: Preparation and examination through several characterization methods. Appl. Surf. Sci. 2013, 282, 236–244. [Google Scholar] [CrossRef]
- Regkouzas, P.; Diamadopoulos, E. Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere 2019, 224, 840–851. [Google Scholar] [CrossRef]
- Huang, Q.; Song, S.; Chen, Z.; Hu, B.; Chen, J.; Wang, X. Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of-the-art review. Biochar 2019, 1, 45–73. [Google Scholar] [CrossRef]
- Ye, S.; Yan, M.; Tan, X.; Liang, J.; Zeng, G.; Wu, H.; Song, B.; Zhou, C.; Yang, Y.; Wang, H. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B Environ. 2019, 250, 78–88. [Google Scholar] [CrossRef]
- Jin, Z.; Xiao, S.; Dong, H.; Xiao, J.; Tian, R.; Chen, J.; Li, Y.; Li, L. Adsorption and catalytic degradation of organic contaminants by biochar: Overlooked role of biochar’s particle size. J. Hazard. Mater. 2022, 422, 126928. [Google Scholar] [CrossRef]
- Chen, L.; Yang, S.; Zuo, X.; Huang, Y.; Cai, T.; Ding, D. Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chem. Eng. J. 2018, 354, 856–865. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Ahaka, E.O.; Gazi, M. High adsorptive potential of calcined magnetic biochar derived from banana peels for Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems. Environ. Sci. Pollut. Res. 2019, 26, 31887–31899. [Google Scholar] [CrossRef]
- Xie, X.; Li, S.; Zhang, H.; Wang, Z.; Huang, H. Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation. Sci. Total Environ. 2019, 659, 529–539. [Google Scholar] [CrossRef]
- Azalok, K.A.; Oladipo, A.A.; Gazi, M. Hybrid MnFe-LDO–biochar nanopowders for degradation of metronidazole via UV-light-driven photocatalysis: Characterization and mechanism studies. Chemosphere 2021, 268, 128844. [Google Scholar] [CrossRef]
- Silvestri, S.; Gonçalves, M.G.; da Silva Veiga, P.A.; Matos, T.T.d.S.; Peralta-Zamora, P.; Mangrich, A.S. TiO2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye. J. Environ. Chem. Eng. 2019, 7, 102879. [Google Scholar] [CrossRef]
- Lu, L.; Shan, R.; Shi, Y.; Wang, S.; Yuan, H. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 2019, 222, 391–398. [Google Scholar] [CrossRef]
- Shi, J. On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chem. Rev. 2012, 113, 2139–2181. [Google Scholar] [CrossRef]
- Agartan, L.; Kapusuz, D.; Park, J.; Ozturk, A. Effect of initial water content and calcination temperature on photocatalytic properties of TiO2 nanopowders synthesized by the sol–gel process. Ceram. Int. 2015, 41, 12788–12797. [Google Scholar] [CrossRef]
- Lisowski, P.; Colmenares, J.C.; Mašek, O.; Lisowski, W.; Lisovytskiy, D.; Kamińska, A.; Łomot, D. Dual Functionality of TiO2/Biochar Hybrid Materials: Photocatalytic Phenol Degradation in the Liquid Phase and Selective Oxidation of Methanol in the Gas Phase. ACS Sustain. Chem. Eng. 2017, 5, 6274–6287. [Google Scholar] [CrossRef]
- Ashfaq, A.; Nadeem, R.; Gong, H.; Rashid, U.; Noreen, S.; Rehman, S.u.; Ahmed, Z.; Adil, M.; Akhtar, N.; Ashfaq, M.Z.; et al. Fabrication of Novel Agrowaste (Banana and Potato Peels)-Based Biochar/TiO2 Nanocomposite for Adsorption of Cr(VI), Statistical Optimization via RSM Approach. Polymers 2022, 14, 2644. [Google Scholar] [CrossRef]
- Nallaselvam, T.; Rajamohan, S.; Kalaiarasu, B.; Hoang, A.T. High efficient COVID-19 waste co-pyrolysis char/TiO2 nanocomposite for photocatalytic reduction of Cr(VI) under visible light. Environ. Sci. Pollut. Res. 2023, 30, 97178–97194. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhang, A.; Liu, Z.; Li, Y.; Fu, Y.; Chi, W. Biomass-assisted synthesis of long-rod TiO2 with oxygen vacancies active sites and biomass carbon for efficient photocatalytic reduction of Cr(VI) under visible light. Surf. Interfaces 2024, 46, 104110. [Google Scholar] [CrossRef]
- Velumani, M.; Jeyadharmarajan, J. Conversion of novel tannery sludge-derived biochar/TiO2 nanocomposite for efficient removal of Cr (VI) under UV light: Photocatalytic performance and mechanism insight. Environ. Sci. Pollut. Res. 2022, 30, 28173–28191. [Google Scholar] [CrossRef]
- Wang, C.; Wu, G.; Zhu, X.; Xing, Y.; Yuan, X.; Qu, J. Synergistic degradation for o-chlorophenol and enhancement of power generation by a coupled photocatalytic-microbial fuel cell system. Chemosphere 2022, 293, 133517. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Cao, J.; Ma, X.; Ping, J.; Zhang, C.; Ke, T.; Zhang, Y.; Tao, Y.; Chen, L. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf. 2020, 198, 110648. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, B.; Shen, J.; Yan, P.; Kang, J.; Wang, W.; Bi, L.; Zhu, X.; Li, Y.; Wang, S.; et al. Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π–π electron donor-acceptor interaction. J. Hazard. Mater. 2022, 432, 128757. [Google Scholar] [CrossRef]
- Chen, M.; Yan, Z.; Luan, J.; Sun, X.; Liu, W.; Ke, X. π-π electron-donor-acceptor (EDA) interaction enhancing adsorption of tetracycline on 3D PPY/CMC aerogels. Chem. Eng. J. 2023, 454, 140300. [Google Scholar] [CrossRef]
- Wu, X.; Yin, S.; Dong, Q.; Guo, C.; Li, H.; Kimura, T.; Sato, T. Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl. Catal. B Environ. 2013, 142–143, 450–457. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, R.; Chen, S.; Zhu, J.; Wu, P.; Huang, J.; Qi, S. Arsenic(iii) removal from aqueous solution using TiO2-loaded biochar prepared by waste Chinese traditional medicine dregs. RSC Adv. 2022, 12, 7720–7734. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Ye, X.; Hui, Z.; Jiao, D.; Xie, Y.; Chen, S.; Ding, J. Synergistic effect of adsorption-photocatalytic reduction of Cr(vi) in wastewater with biochar/TiO2 composite under simulated sunlight illumination. Phys. Chem. Chem. Phys. 2024, 26, 15891–15901. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Li, G.; Chen, M.; Qin, F.; Li, H.; Qiang, Y. Effect Factor of Arsenite and Arsenate Removal by a Manufactured Material: Activated Carbon-Supported Nano-TiO2. J. Chem. 2020, 2020, 6724157. [Google Scholar] [CrossRef]
Adsorbent | Pseudo-First Order | Pseudo-Second Order | ||||
---|---|---|---|---|---|---|
Qe (mg/g) | k1 (min−1) | R2 | Qe (mg/g) | k2 (min−1) | R2 | |
Light + TBC | 24.40 | 0.03823 | 0.9259 | 27.86 | 0.0358 | 0.9984 |
Light + BC | 11.72 | 0.02348 | 0.9809 | 14.63 | 0.0683 | 0.9955 |
Light + TiO2 | 7.24 | 0.03014 | 0.9974 | 8.96 | 0.1116 | 0.9474 |
Dark + TBC | 15.78 | 0.03265 | 0.9488 | 19.11 | 0.0523 | 0.9920 |
Dark + BC | 11.24 | 0.03039 | 0.9932 | 13.90 | 0.0719 | 0.9919 |
Dark + TiO2 | 2.87 | 0.01377 | 0.9946 | 4.11 | 0.2431 | 0.9475 |
Conditions | Rs | Rp | CPE |
---|---|---|---|
Light + TBC | 27.4 | 103.0 Ω | 238 μF |
Light + BC | 27 | 141.3 Ω | 217 μF |
Light + TiO2 | 27.9 | 432.0 Ω | 176 μF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, Y.; Xie, W.; Li, Z.; Zhou, Y.; Qin, R.; Wang, L.; Zhou, J.; Ren, G. One-Step-Modified Biochar by Natural Anatase for Eco-Friendly Cr (VI) Removal. Sustainability 2024, 16, 8056. https://doi.org/10.3390/su16188056
Zhao Y, Wang Y, Xie W, Li Z, Zhou Y, Qin R, Wang L, Zhou J, Ren G. One-Step-Modified Biochar by Natural Anatase for Eco-Friendly Cr (VI) Removal. Sustainability. 2024; 16(18):8056. https://doi.org/10.3390/su16188056
Chicago/Turabian StyleZhao, Yinxin, Ye Wang, Wenqing Xie, Zitong Li, Yunzhu Zhou, Runjie Qin, Lei Wang, Jiqiang Zhou, and Guiping Ren. 2024. "One-Step-Modified Biochar by Natural Anatase for Eco-Friendly Cr (VI) Removal" Sustainability 16, no. 18: 8056. https://doi.org/10.3390/su16188056