Closing the Loop: Can Anaerobic Digestates from Food Waste Be Universal Source of Nutrients for Plant Growth?
Abstract
:1. Introduction
- 355 kg O2 as BODl
- 35 kg N, of which 77% is dissolved N (27 kg);
- 7 kg P, of which 14% is dissolved (1 kg).
- If there is feed spillage, the emissions will increase relative to the amount of spillage.
2. Materials and Methods
2.1. Anaerobic Digestion and Co-Digestion Process
- Residue biomass coming from MCCA production (80%) was supplemented by fish sludge (20%) FWDFS; fish sludge was obtained from Recirculating Aquaculture Systems (RAS).
- Residue biomass coming from MCCA production—FWD.
Analysis
2.2. Plant Experiment
2.2.1. Soil Substrate
2.2.2. Tested Samples
2.2.3. Phytotoxkit™
2.2.4. Pot Experiment
- C—parameter value in the control sample (length or mass);
- D—parameter value in dilution sample (length or mass).
2.2.5. Statistical Analysis
3. Results
3.1. Biomethane Production
3.2. Characteristic of Anaerobic Digestates
3.3. Plant Experiments
3.3.1. Phytotoxkit
3.3.2. Pot Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations 2023 The Sustainable Development Goals Report: Special Edition. Available online: https://unstats.un.org/sdgs/report/2023/ (accessed on 29 April 2024).
- Division, I.E.; Forbes, H.; Peacock, E.; Abbot, N.; Jones, M. Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste. Available online: https://wedocs.unep.org/20.500.11822/45230 (accessed on 29 April 2024).
- Yang, Z.; Yang, L.; Zhang, J.; Mao, K.; Malikakhon, K.; Liu, G.; Zhang, R.Z.; Wang, W. Improvement of biofuel recovery from food waste by integration of anaerobic digestion, digestate pyrolysis and syngas biomethanation under mesophilic and thermophilic conditions. J. Clean. Prod. 2020, 256, 120594. [Google Scholar] [CrossRef]
- Jia, G.; Zhang, H.; Krampe, J.; Muster, T.; Gao, B.; Zhu, N.; Jin, B. Applying a chemical equilibrium model for optimizing struvite precipitation for ammonium recovery from anaerobic digester effluent. J. Clean. Prod. 2017, 147, 297–305. [Google Scholar] [CrossRef]
- Tonanzi, B.; Gallipoli, A.; Frugis, A.; Gianico, A.; Lazzazzara, M.; Angelini, S.; Cecchini, G.; Braguglia, C.M. Bio-based production of medium-chain carboxylic acids from food waste and sludge without chemical addition: The pivotal role of mix ratio and pretreatment. J. Clean. Prod. 2024, 436, 140560. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemes, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion e a review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Tampio, E.; Marttinen, S.; Rintala, J. Liquid fertilizer products from anaerobic digestion of food waste: Mass, nutrient and energy balance of four digestate liquid treatment systems. J. Clean. Prod. 2016, 125, 22–32. [Google Scholar] [CrossRef]
- Fuchs, W.; Drosg, B. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci. Tech. 2013, 67, 1984–1993. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, X.; Zhao, W.; Wang, Y.; Cui, P.; Zeng, R.J.; Yu, L.; Zhou, S. Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions. Bioresour. Technol. 2019, 279, 234–242. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Wang, R.; Lu, Q.; Wu, J.; Zhang, D.; Nie, Z.; Wei, Z. Effect of the addition of exogenous precursors on humic substance formation during composting. Waste Manag. 2018, 79, 462–471. [Google Scholar] [CrossRef]
- Herbes, C.; Roth, U.; Wulf, S.; Dahlin, J. Economic assessment of different biogas digestate processing technologies: A scenario-based analysis. J. Clean. Prod. 2020, 255, 120282. [Google Scholar] [CrossRef]
- Cheong, J.; Lee, J.; Lim, J.; Song, S.; Tan, J.; Chiam, Z.; Yap, K.; Lim, Y.; Zhang, J.; Tan, H.; et al. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao Bai cai (Brassica rapa). Sci. Total Environ. 2020, 715, 136789. [Google Scholar] [CrossRef] [PubMed]
- Bergheim, A.; Braaten, B. Modell for utslipp fra norske matfiskanlegg til sjø. Rapp. Fra IRIS 2007, 180, 35. [Google Scholar]
- Chen, S.; Coffin, D.E.; Malone, R.F. Sludge production and management for recirculating aquaculture systems. J. World Aquac. Soc. 1997, 28, 303–315. [Google Scholar] [CrossRef]
- Hamilton, H.; Brod, E.; Hanserud, H.; Gracey, E.; Vestrum, M.; Bøen, A.; Steinhof, F.; Mueller, D.; Brattebøe, H. Investigating cross-sectoral synergies through integrated aquaculture, fisheries and agricultural phosphorus assessments: A case study of Norway. J. Ind. Ecol. 2016, 20, 867–881. [Google Scholar] [CrossRef]
- Brod, E.; Oppen, J.; Øverli Kristoffersen, A.; Knapp Haraldsen, T.; Krogstad, T. Drying or anaerobic digestion of fish sludge: Nitrogen fertilization effects and logistics. Ambio 2017, 46, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Estevez, M.M.; Linjordet, R.; Horn, S.J.; Morken, J. Improving nutrient fixation and dry matter content of an ammonium-rich anaerobic digestion effluent by struvite formation and clay adsorption. Water Sci. Technol. 2014, 70, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Cabell, J.; Brod, E.; Ellingsen, J.; Løes, A.; Solli, L.; Standal, I.B.; Toldnes, B.; Vivestad, H. Bruk av Tørket Slam Fra Settefiskanlegg Som Gjødsel i norsklandbruk (Use of dried fish sludge from fish hatcheries as fertiliser in Norwegian agriculture). NIBIO Rapp. Nor. Inst. Bioeconomy Div. Environ. Nat. Resour. 2019, 5, 1–62. Available online: https://nibio.brage.unit.no/nibio-xmlui/handle/11250/2630914 (accessed on 29 April 2024). (In Norwegian).
- Sterner, A.S. Fish Sludge for Fertilizer. 2019. Available online: https://www.sterneras.no/akvakultur-no (accessed on 27 June 2024).
- Bioretur, A.S. Dried Fish Sludge from Bioretur Turned into Fertiliser. 2020. Available online: https://bioretur.no (accessed on 27 June 2024). (In Norwegian).
- Raposo, F.; Borja, R.; Martín, M.A.; Martín, A.; de la Rubia, M.A.; Rincón, B. Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chem. Eng. J. 2009, 149, 70–77. [Google Scholar] [CrossRef]
- ISO Standard No. 18763:2016; Soil Quality-Determination of the Toxic Effects of Pollutants on Germination and Early Growth of Higher Plant. International Organization for Standardization: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/63317.html (accessed on 29 April 2024).
- OECD. Earthworm, Acute Toxicity Tests (OECD Test No. 207). 1984. Available online: https://www.oecd-ilibrary.org/environment/test-no-207-earthworm-acute-toxicity-tests_9789264070042-en (accessed on 29 April 2024).
- MicroBioTests Inc. Phytotoxkit. Phytotoxkit for Determination of the Direct Effects of Chemicals on Seed Germination and Early Growth of Plants; Standard Operation Procedure. 2019. Available online: https://www.microbiotests.com/toxkit/phytotoxicity-test-with-phytotoxkit-liquid-samples/ (accessed on 28 April 2024).
- MicroBioTests Inc. Phytotoxkit. Seed Germination and Early Growth Microbiotest with Higher Plants; Standard Operation Procedure. 2019. Available online: https://www.microbiotests.com/toxkit/phytotoxicity-test-with-phytotoxkit-solid-samples/ (accessed on 28 April 2024).
- OECD. Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test (OECD Test No. 208). 2014. Available online: https://www.oecd-ilibrary.org/environment/test-no-208-terrestrial-plant-test-seedling-emergence-and-seedling-growth-test_9789264070066-en (accessed on 29 April 2024).
- REGULATION (EU) 2019/1009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009 (accessed on 29 April 2024).
- Lencioni, G.; Imperiale, D.; Cavirani, N.; Marmiroli, N.; Marmiroli, M. Environmental application and phytotoxicity of anaerobic digestate from pig farming by in vitro and in vivo trials. Int. J. Environ. Sci. 2016, 13, 2549–2560. [Google Scholar] [CrossRef]
- Da Ros, C.; Libralato, G.; Ghirardini, A.V.; Radaelli, M.; Cavinato, C. Assessing the potential phytotoxicity of digestate from winery wastes. Ecotoxicol. Environ. Saf. 2018, 150, 26–33. [Google Scholar] [CrossRef]
- Coelho, J.J.; Prieto, M.L.; Dowling, S.; Hennessy, A.; Casey, I.; Woodcock, T.; Kennedy, N. Physical-chemical Traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag. 2018, 78, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, C.; Zhang, X.; Yuan, Q.; Shan, S. Effect of photocatalysis on the physicochemical properties of liquid digestate. Environ. Res. 2023, 223, 115467. [Google Scholar] [CrossRef] [PubMed]
- Solé-Bundó, M.; Cucina, M.; Folch, M.; Tàpias, J.; Gigliotti, G.; Garfí, M.; Ferrer, I. Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Sci. Total Environ. 2017, 586, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bona, D.; Scrinzi, D.; Tonon, G.; Ventura, M.; Nardin, T.; Zottele, F.; Andreis, D.; Andreottola, G.; Fiori, L.; Silvestri, S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. Agro-Environmental Properties. J. Environ. Manag. 2022, 312, 114894. [Google Scholar] [CrossRef] [PubMed]
- Estevez, M.M.; Tomczak-Wandzel, R.; Kvamme, K. Fish sludge as a co-substrate in the anaerobic digestion of municipal sewage sludge- maximizing the utilization of available organic resources. EFB Bioeconomy J. 2022, 2, 100027. [Google Scholar] [CrossRef]
- Netshivhumbe, R.; Faloye, F.; Tolessa, A.; Görgens, J.; Goosen, N. Anaerobic co-digestion of fish sludge originating from a Recirculating Aquaculture System. Waste Biomass Valor. 2024, 1–17. [Google Scholar] [CrossRef]
- Akhiar, A.; Battimelli, A.; Torrijos, M.; Carrère, H. Comprehensive characterization of the liquid fraction of digestates from Full-scale anaerobic co-digestion. Waste Manag. Res. 2017, 59, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.; Eraky, M.; Alhajeri, N.S.; Osman, A.I.; Rooney, D.W. Cultivation of microalgae on liquid anaerobic digestate for depollution, Biofuels and Cosmetics: A Review. Environ. Chem. Lett. 2022, 20, 3631–3656. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Bonanomi, G.; Incerti, G.; Barile, E.; Capodilupo, M.; Antignani, V.; Mingo, A.; Lanzotti, V.; Scala, F.; Mazzoleni, S. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: Evidence from solid-state 13C NMR spectroscopy. New Phytol. 2011, 191, 1018–1030. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; De La Fuente, C.; Ferrer-Costa, A.; Carrasco, L.; Cegarra, J.; Abad, M.; Bernal, M.P. Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 2012, 40, 181–189. [Google Scholar] [CrossRef]
- Simioni, T.; Agustini, C.B.; Dettmer, A. Use of tannery waste anaerobic digestate as agricultural fertilizer: An analysis of oat growth and soil fertility. Waste Biomass Valor. 2023, 14, 1197–1206. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; De La Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- O’Connor, J.T.; Mickan, B.S.; Gurung, S.K.; Siddique, K.H.M.; Leopold, M.; Bolan, N. Enhancing nutrient recovery from food waste anaerobic digestate. Bioresour. Technol. 2023, 390, 129869. [Google Scholar] [CrossRef]
- Cristina, G.; Camelin, E.; Tommasi, T.; Fino, D.; Pugliese, M. Anaerobic digestates from sewage sludge used as fertilizer on a poor alkaline sandy soil and on a peat substrate: Effects on tomato plants growth and on soil properties. J. Environ. Manag. 2020, 269, 110767. [Google Scholar] [CrossRef]
Parameter | Unit | RAS Sludge | Domestic Wastewater |
---|---|---|---|
Average (Range) | Average (Range) | ||
Total suspended solids (TSS) | % | 1.8 (1.4–2.6) | 5 (2–8) |
Biological oxygen demand BOD5 | mgO2/L | 2760 (1590–3870) | 6000 (2000–3000) |
Ammonia nitrate (N-NH3) | mg/L | 18.3 (6.8–25.6) | 400 (100–800) |
Total phosphorus (TP) | mg/L | 1.3 (no data) | 0.7 (no data) |
pH | --- | 6.7 (6.0–7.2) | 6.0 (5.0–8.0) |
Alkalinity CaCO3 | mg/L | 334 (284–415) | 600 (500–1500) |
% (v/v) of Irrigation Liquid Volume | Dose [L digestate/kg soil] |
---|---|
Phytotoxkit™ | |
Mass of soil per plate: 0.1 kg; volume of irrigation liquid: 0.043 L | |
1 | 4.3 × 10−3 |
5 | 21.5 × 10−3 |
10 | 43 × 10−3 |
Pot Experiment | |
Mass of soil per pot: 0.35 kg; volume of irrigation liquid: 0.090 L | |
0.5 | 1.3 × 10−3 |
1 | 2.6 × 10−3 |
5 | 13 × 10−3 |
Parameter | Unit | FWDFS | FWD | Reference Value According to Regulation 2019/1009 [28] |
---|---|---|---|---|
Cr | mg/kg | 5.66 | 9.45 | 7.00 |
Zn | mg/kg | 509.43 | 749.19 | 800.00 |
Cd | mg/kg | 0.38 | 0.65 | 1.50 |
Cu | mg/kg | 100.00 | 172.64 | 300.00 |
Ni | mg/kg | 3.96 | 8.79 | 50.00 |
Pb | mg/kg | 4.72 | 8.47 | 120.00 |
Hg | mg/kg | 0.007 | 0.007 | 1.00 |
Dry matter | % | 5.30 | 3.07 | --- |
Total solids | g/kg | 50.21 | 32.54 | --- |
Volatile solids | g/kg | 39.29 | 22.67 | --- |
N (total) | % | 0.32 | 0.32 | 1.00 |
P (total) | % | <0.05 | <0.05 | 1.00 |
K | % | 0.15 | 0.15 | 1.00 |
pH | --- | 8.79 | 8.06 | --- |
TOC | % | 0.52 | 0.33 | 5.00 |
TOC/TN | --- | 8.56 | 5.88 | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichy, P.; Tomczak-Wandzel, R.; Szatkowska, B.; Kalka, J.; Yadav, R.S. Closing the Loop: Can Anaerobic Digestates from Food Waste Be Universal Source of Nutrients for Plant Growth? Sustainability 2024, 16, 6171. https://doi.org/10.3390/su16146171
Cichy P, Tomczak-Wandzel R, Szatkowska B, Kalka J, Yadav RS. Closing the Loop: Can Anaerobic Digestates from Food Waste Be Universal Source of Nutrients for Plant Growth? Sustainability. 2024; 16(14):6171. https://doi.org/10.3390/su16146171
Chicago/Turabian StyleCichy, Piotr, Renata Tomczak-Wandzel, Beata Szatkowska, Joanna Kalka, and Ravi Shankar Yadav. 2024. "Closing the Loop: Can Anaerobic Digestates from Food Waste Be Universal Source of Nutrients for Plant Growth?" Sustainability 16, no. 14: 6171. https://doi.org/10.3390/su16146171