Towards Zero-Carbon Buildings: Challenges and Opportunities from Reversing the Material Pyramid
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Scope of the Work
2. Materials and Methods
2.1. General Framework
2.2. Case Study: The “Scalo Lambrate” Project
2.2.1. Background
2.2.2. Main Characteristics of the Case Study
2.3. Solutions for High Energy Performance
2.4. Construction System and Material Balance for Carbon Mitigation
2.4.1. Material Diets for Zero-Carbon Building
2.4.2. Load-Bearing Structure
2.4.3. Building Envelope
2.4.4. Internal Partitions
2.5. Method of Carbon Footprint Modelling
- GWPfos is the contribution to climate change from fossil greenhouse gasses;
- GWPbio is the contribution to climate change from biogenic CO2.
2.5.1. System Boundaries Considered for the Carbon Footprint Assessment
2.5.2. Material Processing and Transport
2.5.3. Use of the Building and Maintenance
2.5.4. End-of-Life and Final Disposal
2.5.5. Biogenic Carbon Accounting from Carbon Uptake and Storage
3. Results
3.1. Operational Carbon
3.2. Embodied Carbon
3.3. Life Cycle of Zero-Carbon Building
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Material | Name of the Process | Source | Functional Unit | GWP-100 Production | GWP 100 End-of-Life |
---|---|---|---|---|---|
(FU) | kgCO2-eq/FU | kgCO2-eq/FU | |||
Steel profile | Steel, low-alloyed {RER}|steel production, converter, low-alloyed|Cut-off, U | ecoinvent | kg | 0.734 | 0.000 |
Asphalt | Mastic asphalt {CH}|production|Cut-off, U | ecoinvent | kg | 25.800 | 2.340 |
Reinforcing steel | Reinforcing steel {RER}|production|Cut-off, U | ecoinvent | kg | 0.682 | 0.000 |
Concrete | Concrete, normal {CH}|unreinforced concrete production, with cement CEM II/A|Cut-off, U | ecoinvent | kg | 0.089 | 0.010 |
Double glazing | Glazing, double, U < 1.1 W/m2K {RER}|production|Cut-off, U | ecoinvent | m2 | 44.900 | 2.980 |
Drainage | Polyethylene, high-density, granulate {RER}|production|Cut-off, U | ecoinvent | kg | 2.380 | 3.030 |
EPS | Polystyrene foam slab for perimeter insulation {CH}|processing|Cut-off, U | ecoinvent | kg | 4.460 | 3.190 |
Gypsum fiberboard | Gypsum fiberboard {CH}|production|Cut-off, U | ecoinvent | kg | 0.527 | 0.009 |
Woven geotextile | Horticultural fleece {CH}|horticultural fleece production|Cut-off, U | ecoinvent | kg | 3.397 | 3.030 |
Floor ventilation | Polypropylene, granulate {RER}|production|Cut-off, U | ecoinvent | kg | 2.400 | 3.030 |
Plaster | Base plaster {CH}|production|Cut-off, U | ecoinvent | kg | 0.138 | 0.009 |
Mineral wool | Stone wool {CH}|stone wool production|Cut-off, U | ecoinvent | kg | 1.120 | 0.010 |
Clay brick | Clay brick {RER}|production|Cut-off, U | ecoinvent | kg | 0.249 | 0.009 |
Waterproof membrane | Fleece, polyethylene {RER}|production|Cut-off, U | ecoinvent | kg | 2.380 | 3.030 |
PV panel | Photovoltaic panel, single-Si wafer {RER}|production|Cut-off, U | ecoinvent | kWp | 2134.400 | 185.600 |
Ceramic tile | Ceramic tile {CH}|production|Cut-off, U | ecoinvent | kg | 0.768 | 0.009 |
Light clay brick | Light clay brick {DE}|production|Cut-off, U | ecoinvent | kg | 0.161 | 0.009 |
Synthetic turf | Polypropylene, granulate {RER}|production|Cut-off, U | ecoinvent | kg | 2.400 | 3.030 |
Cement tile | Cement tile {CH}|production|Cut-off, U | ecoinvent | kg | 0.050 | 0.009 |
Glass fiber reinforced plastic | Glass fiber reinforced plastic, polyester resin, hand lay-up {RER}|production|Cut-off, S | ecoinvent | kg | 0.682 | 0.000 |
Screed | Lean concrete {CH}|production, with cement CEM II/A|Cut-off, U | ecoinvent | kg | 0.050 | 0.009 |
Polyethylene fleece | Fleece, polyethylene {RER}|production|Cut-off, U | ecoinvent | kg | 2.760 | 2.580 |
Aluminum frame | Window frame, aluminum, U = 1.6 W/m2K {RER}|production|Cut-off, U | ecoinvent | m2 | 191.000 | 25.700 |
Sand | Sand {CH}|gravel and quarry operation|Cut-off, U | ecoinvent | kg | 0.003 | 0.011 |
Alkyd paint | Alkyd paint, white, without water, in 60% solution state {RER}|Cut-off, S | ecoinvent | m2 | 0.877 | 0.719 |
Material | Name of the Process | Source | Functional Unit | GWP-100 Production | GWP 100 End-of-Life |
---|---|---|---|---|---|
(FU) | kgCO2-eq/FU | kgCO2-eq/FU | |||
Steel profile | Steel, low-alloyed {RER}|steel production, converter, low-alloyed|Cut-off, U | ecoinvent | kg | 0.734 | 0.000 |
Reinforcing steel | Reinforcing steel {RER}|production|Cut-off, U | ecoinvent | kg | 0.682 | 0.000 |
Reinforced soil | 85% Sand {CH}|gravel and quarry operation|Cut-off, U; 10% Polypropylene, fibers {RER}|production|Cut-off, U; 5% Cement, unspecified {CH}|cement, unspecified, import from Europe|Cut-off, U | ecoinvent | kg | 0.089 | 0.011 |
Autoclaved aerated-concrete block | Autoclaved aerated-concrete block {CH}|production|Cut-off, U | ecoinvent | kg | 0.408 | 0.009 |
Concrete | Concrete, normal {CH}|unreinforced-concrete production, with cement CEM II/A|Cut-off, U | ecoinvent | kg | 0.089 | 0.010 |
Low-carbon concrete | 15% Cement, pozzolana and fly ash 36–55%,non-US {Europe without Switzerland}|cement production, pozzolana and fly ash 36–55%, non-US|Cut-off, U; 37.7% Gravel, crushed {CH}|production|Cut-off, U; 37.7% Sand {CH}|gravel and quarry operation|Cut-off, U; 9.5% Tap water {CH}|market for|Cut-off, U; 0.1% Plasticizer, for concrete, based on sulfonated melamine formaldehyde {GLO}|market for|Cut-off, U | ecoinvent | kg | 0.053 | 0.010 |
Double glazing | Glazing, double, U < 1.1 W/m2K {RER}|production|Cut-off, U | ecoinvent | m2 | 44.900 | 2.980 |
Drainage | Polyethylene, high-density, granulate {RER}|production|Cut-off, U | ecoinvent | kg | 2.380 | 3.030 |
Glued laminated timber | Glued laminated timber, for indoor use {RER}|production|Cut-off, U | ecoinvent | kg | 0.365 | 0.121 |
Wooden geotextile | Horticultural fleece {CH}|horticultural fleece production|Cut-off, U | ecoinvent | kg | 3.397 | 3.030 |
Gravel | Gravel, round {CH}|gravel and sand quarry operation|Cut-off, S | ecoinvent | kg | 0.004 | 0.009 |
Floor ventilation | Polypropylene, granulate {RER}|production|Cut-off, U | ecoinvent | kg | 1.570 | 3.030 |
Plaster | Cover plaster, mineral {CH}|production|Cut-off, U | ecoinvent | kg | 0.138 | 0.009 |
Wood wool | Wood wool {RER}|production|Cut-off, U | ecoinvent | kg | 0.404 | 0.041 |
Glass wool | Glass-wool mat {CH}|production|Cut-off, U | ecoinvent | kg | 1.120 | 0.010 |
Gypsum plasterboard | Gypsum plasterboard {CH}|production|Cut-off, U | ecoinvent | kg | 0.527 | 0.009 |
Lightweight screed | Lightweight concrete, expanded perlite {CH}|production|Cut-off, U | ecoinvent | kg | 0.223 | 0.010 |
Kenaf textile | Textile, kenaf {GLO}|market for|Cut-off, U | ecoinvent | kg | 1.120 | 0.221 |
Waterproof membrane | Fleece, polyethylene {RER}|production|Cut-off, U | ecoinvent | kg | 2.380 | 3.030 |
PV panel | Photovoltaic panel, single-Si wafer {RER}|production|Cut-off, U | ecoinvent | kWp | 2134.400 | 185.600 |
Sawnwood | Sawnwood, softwood, dried (u = 10%), planed {RER}|production|Cut-off, U | ecoinvent | kg | 0.133 | 0.010 |
OSB | Oriented strand board {RER}|production|Cut-off, U | ecoinvent | kg | 0.487 | 0.127 |
Laminated bamboo parquet | Flattened bamboo (3 ply) (MOSO Bamboo Forest) | INBAR | kg | 0.620 | 0.077 |
Ceramic tile | Ceramic tile {CH}|production|Cut-off, U | ecoinvent | kg | 0.768 | 0.009 |
Synthetic turf | Polypropylene, granulate {RER}|production|Cut-off, U | ecoinvent | kg | 1.570 | 3.030 |
Cement tile | Cement tile {CH}|production|Cut-off, U | ecoinvent | kg | 0.050 | 0.009 |
Cork insulation | Cork slab {RER}|production|Cut-off, U | ecoinvent | kg | 1.120 | 0.221 |
Glass fiber-reinforced mash | Glass fiber-reinforced plastic, polyester resin, hand lay-up {RER}|production|Cut-off, U | ecoinvent | kg | 0.682 | 0.000 |
Bamboo cladding | Decking and Cladding (MOSO Bamboo N-finity) | INBAR | kg | 1.193 | 0.121 |
Sand | Sand {CH}|gravel and quarry operation|Cut-off, U | ecoinvent | kg | 0.003 | 0.011 |
Lean concrete screed | Lean concrete {CH}|production, with cement CEM II/A|Cut-off, U | ecoinvent | kg | 0.050 | 0.009 |
Window timber frame | Window frame, wood, U = 1.5 W/m2K {RER}|production|Cut-off, U | ecoinvent | m2 | 109.000 | 19.600 |
Alkyd paint | Alkyd paint, white, without solvent, in 60% solution state {RER}|Cut-off, U | ecoinvent | m2 | 0.644 | 0.719 |
References
- UNEP. Global Status Report for Buildings and Construction: Beyond foundations—Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; United Nations Environment Programme: Nairobi, Kenya, 2024. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission—The European Green Deal, Official Journal of the European Union. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 16 April 2024).
- European Commission. Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’), Official Journal of the European Union. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119 (accessed on 16 April 2024).
- International Energy Agency, Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach—2023 Update, Paris. 2023. Available online: www.iea.org/t&c/ (accessed on 16 April 2024).
- Müller, D.B.; Liu, G.; Løvik, A.N.; Modaresi, R.; Pauliuk, S.; Steinhoff, F.S.; Brattebø, H. Carbon emissions of infrastructure development. Environ. Sci. Technol. 2013, 47, 11739–11746. [Google Scholar] [CrossRef] [PubMed]
- Rovers, R. People vs Resources: Restoring a World Out of Balance; Eburon Academic Publishers: Vredenburg, South Africa, 2019. [Google Scholar]
- Ritzen, M.; Rovers, R.; Gommans, L.; Geurts, C. Insulation versus installation—An exploration towards maximization. In Proceedings of the Sustainable Building 13—Implementing Sustainability—Barriers and Chances, Munich, Germany, 24–26 April 2013. [Google Scholar]
- Maierhofer, D.; Röck, M.; Saade, M.R.M.; Hoxha, E.; Passer, A. Critical life cycle assessment of the innovative passive nZEB building concept ‘be 2226’ in view of net-zero carbon targets. Build. Environ. 2022, 223, 109476. [Google Scholar] [CrossRef]
- Röck, M.; Ruschi Mendes Saade, M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2019, 131, 114107. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a global carbon sink. Nat. Sustain. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Brunner, P.H. Urban mining: A contribution to reindustrializing the city. J. Ind. Ecol. 2011, 15, 339–341. [Google Scholar] [CrossRef]
- Pittau, F.; Krause, F.; Lumia, G.; Habert, G. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 2018, 129, 117–129. [Google Scholar] [CrossRef]
- Carcassi, O.B.; Habert, G.; Malighetti, L.E.; Pittau, F. Material Diets for Climate-Neutral Construction. Environ. Sci. Technol. 2022, 56, 5213–5223. [Google Scholar] [CrossRef] [PubMed]
- C40 Cities. A Global Network of Mayors Taking Urgent Climate Action. Available online: https://www.c40.org/ (accessed on 16 April 2024).
- C40. Reinventing Cities. Available online: https://www.c40reinventingcities.org/ (accessed on 16 April 2024).
- Sedova, A.; Celani, A. Urban Regeneration: What Are the Architectural Trends? E3S Web Conf. 2023, 457, 03016. [Google Scholar] [CrossRef]
- Campioli, A.; Mussinelli, E.; Lavagna, M.; Tartaglia, A. Design Strategies and LCA of Alternative Solutions for Resilient, Circular, and Zero-Carbon Urban Regeneration: A Case Study. In Regeneration of the Built Environment from a Circular Economy Perspective; Springer: Berlin/Heidelberg, Germany, 2020; pp. 205–215. [Google Scholar] [CrossRef]
- EU Parliament. Directive 2010/31/EU of the European Parliament and of the Council on the Energy Performance of Buildings, Document 02010L0031-20210101. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02010L0031-20210101 (accessed on 16 April 2024).
- EU Parliament. Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the Energy Performance of Buildings (Recast), Document 32024L1275—Official Journal of the European Union. 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/1275/oj (accessed on 18 May 2024).
- EU Commission. Energy Performance of Buildings Directive. 2024. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 16 April 2024).
- Directive of the European Parliament and of the Council on the Energy Performance of Buildings, Document 52021PC0802. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2021:802:FIN (accessed on 16 April 2024).
- Cordero, A.S.; Melgar, S.G.; Márquez, J.M.A. Green building rating systems and the new framework level(s): A critical review of sustainability certification within Europe. Energies 2019, 13, 66. [Google Scholar] [CrossRef]
- EU Commission. Level(s)—European Framework for Sustainable Buildings. Available online: https://environment.ec.europa.eu/topics/circular-economy/levels_en (accessed on 16 April 2024).
- Izaola, B.; Akizu-Gardoki, O.; Oregi, X. Setting baselines of the embodied, operational and whole life carbon emissions of the average Spanish residential building. Sustain. Prod. Consum. 2023, 40, 252–264. [Google Scholar] [CrossRef]
- Attia, S.; Santos, M.C.; Al-Obaidy, M.; Baskar, M. Leadership of EU member States in building carbon footprint regulations and their role in promoting circular building design. IOP Conf. Ser. Earth Environ. Sci. 2021, 855, 012023. [Google Scholar] [CrossRef]
- Pasanen, P.; Castro, R. Carbon Heroes Benchmark Program—Whole building embodied carbon profiling. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012028. [Google Scholar] [CrossRef]
- EU Commission. Supporting the Development of a Roadmap for the Reduction of Whole Life Carbon of Buildings—Final Technical Report; EU Commission: Brussels, Belgium, 2024. [Google Scholar] [CrossRef]
- Levasseur, A.; Lesage, P.; Margni, M.; Samson, R. Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment. J. Ind. Ecol. 2013, 17, 117–128. [Google Scholar] [CrossRef]
- Breton, C.; Blanchet, P.; Amor, B.; Beauregard, R.; Chang, W.S. Assessing the climate change impacts of biogenic carbon in buildings: A critical review of two main dynamic approaches. Sustainability 2018, 10, 2020. [Google Scholar] [CrossRef]
- Brandão, M.; Levasseur, A.; Kirschbaum, M.; Weidema, B.; Cowie, A.; Jørgensen, S.; Hauschild, M.; Pennington, D.; Chomkhamsri, K. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Clycle Assess. 2012, 18, 230–240. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Xie, X.; Yu, Z.; Von Gadow, K.; Xu, J.; Zhao, S.; Yang, Y. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments. Sci. Rep. 2017, 7, 39857. [Google Scholar] [CrossRef]
- Vogtländer, J.G.; Van Der Velden, N.M.; Van Der Lugt, P. Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; Cases on wood and on bamboo. Int. J. Life Cycle Assess. 2014, 19, 13–23. [Google Scholar] [CrossRef]
- Habert, G. Fast-Growing Bio-Based Materials Can Heal the World. Build. Cities 2021, 4, 6. [Google Scholar]
- Göswein, V.; Silvestre, J.D.; Monteiro, C.S.; Habert, G.; Freire, F.; Pittau, F. Influence of material choice, renovation rate, and electricity grid to achieve a Paris Agreement-compatible building stock: A Portuguese case study. Build. Environ. 2021, 195, 107773. [Google Scholar] [CrossRef]
- Levasseur, A.; Lesage, P.; Margni, M.; Deschěnes, L.; Samson, R. Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environ. Sci. Technol. 2010, 44, 3169–3174. [Google Scholar] [CrossRef]
- Lippke, B.; Oneil, E.; Harrison, R.; Skog, K.; Gustavsson, L.; Sathre, R. Life cycle impacts of forest management and wood utilization on carbon mitigation: Knowns and unknowns. Carbon Manag. 2011, 2, 303–333. [Google Scholar] [CrossRef]
- MIT. NTC 2008—Norme Tecniche per le Costruzioni, Rome; MIT: Cambridge, MA, USA, 2008. [Google Scholar]
- EPD Italy. Available online: https://www.epditaly.it/ (accessed on 17 May 2024).
- Guest, G.; Cherubini, F.; Strømman, A.H. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life. J. Ind. Ecol. 2013, 17, 20–30. [Google Scholar] [CrossRef]
- Pittau, F.; Lumia, G.; Heeren, N.; Iannaccone, G.; Habert, G. Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock. J. Clean Prod. 2019, 214, 365–376. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- D’Amico, B.; Pomponi, F. On mass quantities of building frame structures. J. Build. Eng. 2020, 31, 101426. [Google Scholar] [CrossRef]
- Boccadoro, L.; Frangi, A. Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs made of Beech-Laminated Veneer Lumber. J. Perform. Constr. Facil. 2014, 28, A4014006. [Google Scholar] [CrossRef]
- Zingg, S.; Pittau, F.; Lammlein, A.; Hajiesmaeili, T.; Lura, P.; Denarie, E.; Habert, G. Environmental assessment of radical innovation in concrete structures. In XIV DBMC—14th International Conference on Durability of Building Materials and Components; De Schutter, G., De Belie, N., Janssens, A., Van Den Bossche, N., Eds.; RILEM Publications S.A.R.L.: Ghent, Belgium, 2017; pp. 1–12. Available online: http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf (accessed on 16 April 2024).
- Spengler, J.D.; Chen, Q. Indoor air quality factors in designing a healthy building. Annu. Rev. Energy Environ. 2000, 25, 567–601. [Google Scholar] [CrossRef]
- Dipartimento V.V.F., D.M. 16.5.1987—Norme di Sicurezza Antincendi per Gli Edifici di Civile Abitazione (Agg. 2020). 2000. Available online: https://www.vigilfuoco.it/allegati/PI/RegoleTecnicheXAttivita/COORD_DM_16_05_1987_n_246.pdf (accessed on 17 May 2024).
- Dipartimento V.V.F., D.M. 9.4.1994—Approvazione Della Regola Tecnica di Prevenzione Incendi per la Costruzione e L’esercizio Delle Attività Ricettive Turistico-Alberghiere (Agg. 2023). 2023. Available online: https://www.vigilfuoco.it/allegati/PI/RegoleTecnicheXAttivita/COORD_DM_09_04_1994%20-%2014_07_2015.pdf (accessed on 17 May 2024).
- Nazari, A.; Sanjayan, J.G. Handbook of Low Carbon Concrete; Elsevier: Oxford, UK, 2017; Available online: https://books.google.it/books?hl=en&lr=&id=3m1_CwAAQBAJ&oi=fnd&pg=PP1&dq=Low+CO2+concrete&ots=PJlCwyuig5&sig=AbK6ZAYoW-l8mL6mY3tbi70-ASo&redir_esc=y#v=onepage&q=LowCO2concrete&f=false (accessed on 19 February 2021).
- GUTEX Thermowall®. Available online: https://gutex.it/assortimento/sistema/sistemi/sys/gutex-thermowall-wdvs/ (accessed on 17 May 2024).
- MOSO® Bamboo N-finity Outdoor Cladding. Available online: https://www.moso-bamboo.com/wp-content/uploads/Catalogue_EN_Bamboo-N-finity_Cladding_LQ.pdf (accessed on 17 May 2024).
- HONEXT®—Flame Retardant Boards for Circular Construction. Available online: https://honextmaterial.com/products/ (accessed on 17 May 2024).
- Pittau, F.; Giacomel, D.; Iannaccone, G.; Malighetti, L.E. Environmental consequences of refurbishment vs. demolition and reconstruction: A comparative life cycle assessment of an Italian case study. J. Green Build. 2020, 15, 155–172. [Google Scholar] [CrossRef]
- Tingley, D.D.; Davison, B. Design for deconstruction and material reuse. Proc. Inst. Civ. Eng. Energy 2011, 164, 195–204. [Google Scholar] [CrossRef]
- Hemp Fiber FiberTherm Canawool. Available online: https://www.woodfiber.it/hemp-fiber-canawool.html (accessed on 17 May 2024).
- IPCC. Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Fenner, A.E.; Kibert, C.J.; Woo, J.; Morque, S.; Razkenari, M.; Hakim, H.; Lu, X. The carbon footprint of buildings: A review of methodologies and applications. Renew. Sustain. Energy Rev. 2018, 94, 1142–1152. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H.; Hertwich, E. Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecol. Modell 2011, 223, 59–66. [Google Scholar] [CrossRef]
- Guest, G.; Bright, R.M.; Cherubini, F.; Strømman, A.H. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems. Environ. Impact Assess Rev. 2013, 43, 21–30. [Google Scholar] [CrossRef]
- Hoxha, E.; Passer, A.; Saade, M.R.M.; Trigaux, D.; Shuttleworth, A.; Pittau, F.; Allacker, K.; Habert, G. Biogenic carbon in buildings: A critical overview of LCA methods. Build. Cities 2020, 1, 504–524. [Google Scholar] [CrossRef]
- Foster, D.E.; Battles, J.J.; Collins, B.M.; York, R.A.; Stephens, S.L. Potential wildfire and carbon stability in frequent-fire forests in the Sierra Nevada: Trade-offs from a long-term study. Ecosphere 2020, 11, e03198. [Google Scholar] [CrossRef]
- ISO/TC 207/SC 7, EN ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. ISO: Geneva, Switzerland, 2018.
- CEN/TC 350, EN 15978:2011; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. ISO: Geneva, Switzerland, 2011.
- Lai, K.E.; Rahiman, N.A.; Othman, N.; Ali, K.N.; Lim, Y.W.; Moayedi, F.; Mat Dzahir, M.A. Quantification process of carbon emissions in the construction industry. Energy Build. 2023, 289, 113025. [Google Scholar] [CrossRef]
- Takano, A.; Pittau, F.; Hafner, A.; Ott, S.; Hughes, M.; De Angelis, E. Greenhouse gas emission from construction stage of wooden buildings. Int. Wood Prod. J. 2014, 5, 217–223. [Google Scholar] [CrossRef]
- Ecoinvent, Database—Ecoinvent. Available online: https://ecoinvent.org/database/ (accessed on 16 April 2024).
- PRé Sustainability, SimaPro|LCA Software for Informed Changemakers. Available online: https://simapro.com/ (accessed on 16 April 2024).
- Terra Solida—Linea Nature. Available online: https://terrasolida.it/nature/ (accessed on 17 May 2024).
- Vogtländer, J.G.; Van der Lugt, P. The Environmental Impact of Industrial Bamboo Products: Life-cycle Assessment and Carbon Sequestration; INBAR: Beijing, China, 2013. [Google Scholar]
- Jones, D.; Brischke, C. Performance of Bio-Based Building Materials; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Lucherini, A.; Razzaque, Q.S.; Maluk, C. Exploring the fire behaviour of thin intumescent coatings used on timber. Fire Saf. J. 2019, 109, 102887. [Google Scholar] [CrossRef]
- Brondízio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2022; 1144p, ISBN 978-3-947851-20-1. [Google Scholar]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A Roadmap for Rapid Decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Desing, H.; Brunner, D.; Takacs, F.; Nahrath, S.; Frankenberger, K.; Hischier, R. A circular economy within the planetary boundaries: Towards a resource-based, systemic approach. Resour. Conserv. Recycl. 2020, 155, 104673. [Google Scholar] [CrossRef]
- de Koning, A.; Kleijn, R.; Huppes, G.; Sprecher, B.; van Engelen, G.; Tukker, A. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 2018, 129, 202–208. [Google Scholar] [CrossRef]
- Nansai, K.; Nakajima, K.; Kagawa, S.; Kondo, Y.; Suh, S.; Shigetomi, Y.; Oshita, Y. Global flows of critical metals necessary for low-carbon technologies: The case of neodymium, cobalt, and platinum. Environ. Sci. Technol. 2014, 48, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). IPCC—SR1.5—Indicative Linkages between Mitigation Options and Sustainable Development Using SDGs (The Linkages Do Not Show Costs and Benefits); IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Daehn, K.; Basuhi, R.; Gregory, J.; Berlinger, M.; Somjit, V.; Olivetti, E.A. Innovations to decarbonize materials industries. Nat. Rev. Mater. 2021, 7, 275–294. [Google Scholar] [CrossRef]
- Barrett, J.; Cooper, T.; Hammond, G.P.; Pidgeon, N. Industrial energy, materials and products: UK decarbonisation challenges and opportunities. Appl. Therm. Eng. 2018, 136, 643–656. [Google Scholar] [CrossRef]
- IEA. Global Energy and Process Emissions from Buildings, Including Embodied Emissions from New Construction. 2022. Available online: https://www.iea.org/data-and-statistics/charts/global-energy-and-process-emissions-from-buildings-including-embodied-emissions-from-new-construction-2021 (accessed on 5 February 2023).
- REN21. Renewables 2024: Global Status Report—Global Overview; REN21: Paris, France, 2024. [Google Scholar]
- European Environment Agency. The European Environment: State and Outlook 2020: Knowledge for Transition to a Sustainable; Europe: Copenhagen, Denmark, 2019. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Decarbonisation of Electricity Generation: Efforts and Challenges. In Environmental Footprints and Eco-Design of Products and Processes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 47–77. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Marani, A.; Zhang, L. Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies. Renew. Sustain. Energy Rev. 2024, 191, 114169. [Google Scholar] [CrossRef]
- Petrichenko, L.; Sauhats, A.; Diahovchenko, I.; Segeda, I. Economic Viability of Energy Communities versus Distributed Prosumers. Sustainability 2022, 14, 4634. [Google Scholar] [CrossRef]
Hostel | Student Housing | Housing 1 | Housing 2 | Housing 3 | |
---|---|---|---|---|---|
Surface (m2) | 3298 | 9537 | 11,129 | 4901 | 4370 |
U-Values ZCB Scenario | U-Values BAU Scenario | |
---|---|---|
Perimeter walls | 0.15 W/m2K | 0.26 W/m2K |
Transparent elements | 1.3 W/m2K | 1.4 W/m2K |
Roofs | 0.14 W/m2K | 0.22 W/m2K |
Building Element | Component | BAU | ZCB |
---|---|---|---|
Structure | Foundations | Reinforced Portland concrete | Low-carbon reinforced concrete |
Below-ground structure | Reinforced Portland concrete for walls | Low-carbon reinforced concrete for walls and columns | |
Above-ground structure | Reinforced Portland concrete for beams and columns + concrete slab for interior floors and roof | Low-carbon reinforced concrete + timber-concrete composite slab for interior floors and roof | |
Balconies | Reinforced Portland concrete slab | Hollow clay-block floor with reinforced concrete | |
Envelope | Exterior walls | Hollow concrete blocks + 10 cm EPS panels, mineral finishing or solid larch boards (in places) | Autoclaved aerated concrete blocks + 14 cm wood-fiber panels, mineral finishing or laminated bamboo boards (in places) |
Flat roof | Green roof + 12 cm EPS panels | Green roof + 12 cm glass-wool panels | |
Doors and Windows | Aluminum frame with double glazing | Wood frame with double glazing | |
Partitions | Interior walls | Hollow clay blocks + mineral plaster | Timber frame + recycled paper boards |
Floors | Mineral plaster for the underside + 8 cm cement screed | Structural wood (no finishing cover for the underside) + 15 cm bulk hemp fibers | |
Doors | Aluminum frame | Wood frame | |
Technical systems | Photovoltaic | Single-Si wafer (1475 m2) | Single-Si wafer (2110 m2) |
Water drainage | HDPE + PP | HDPE + PP | |
Plumbing | Steel pipes | Steel pipes |
Hostel | Student Housing | Housing 1, 2 and 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
ZCB | BAU | Saving | ZCB | BAU | Saving | ZCB | BAU | Saving | |
Heating | 217 | 378 | −43% | 135 | 270 | −50% | 156 | 338 | −54% |
Cooling | 362 | 683 | −47% | 445 | 843 | −47% | 879 | 1318 | −33% |
Heating | Cooling | Domestic Hot Water | Other Electrical Uses | |||||
---|---|---|---|---|---|---|---|---|
kWh m−2y−1 | MWhy−1 | kWh m−2y−1 | MWhy−1 | kWh m−2y−1 | MWhy−1 | kWh m−2y−1 | MWhy−1 | |
Hostel | 14 | 110.4 | 16 | 126.8 | 22 | 176.5 | 113 | 900.0 |
Student housing | 11 | 105.6 | 16 | 156.6 | 16 | 157.8 | 35 | 350.0 |
Housing 1 and 2 | 10 | 150.6 | 21 | 317.7 | 12 | 176.7 | 33 | 495.0 |
Housing 3 | 13 | 57.1 | 27 | 117.6 | 13 | 56.5 | 33 | 142.0 |
Emissions from Heating and Cooling [kgCO2-eq/m2y] | Emissions from Domestic hot Water [kgCO2-eq/m2y] | Emissions from Other Electrical Loads [kgCO2-eq/m2y] | |
---|---|---|---|
BAU | 5.6 | 2.7 | 5.7 |
ZCB | 1.4 | 0.7 | 2.3 |
Saving | −74% | −73% | −60% |
ST | EW | BR | IF | IW | DW | PV | HS | PL | UF | UG | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
kgCO2-eq/m−2 | ||||||||||||
BAU | A1-4; B4-5; C2-4 | 166.7 | 44.6 | 29.4 | 100.1 | 59.8 | 38.2 | 40.1 | 19.2 | 9.1 | 9.12 | - |
D | - | - | - | - | - | - | - | - | - | - | −0.9 | |
ZCB | A1-4; B4-5; C2-4 | 105.3 | 74.3 | 21.2 | 58.7 | 41.6 | 48.2 | 57.3 | 38.5 | 18.2 | 6.9 | - |
D | −45.5 | −26.5 | −7.0 | −49.3 | −51.2 | −2.2 | - | - | - | - | −3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruta, M.F.; Pittau, F.; Masera, G. Towards Zero-Carbon Buildings: Challenges and Opportunities from Reversing the Material Pyramid. Sustainability 2024, 16, 4454. https://doi.org/10.3390/su16114454
Ruta MF, Pittau F, Masera G. Towards Zero-Carbon Buildings: Challenges and Opportunities from Reversing the Material Pyramid. Sustainability. 2024; 16(11):4454. https://doi.org/10.3390/su16114454
Chicago/Turabian StyleRuta, Matteo Francesco, Francesco Pittau, and Gabriele Masera. 2024. "Towards Zero-Carbon Buildings: Challenges and Opportunities from Reversing the Material Pyramid" Sustainability 16, no. 11: 4454. https://doi.org/10.3390/su16114454