Engineering Feasibility Assessment of Cage Aquaculture in Offshore Wind Power Generation Areas in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flowchart of This Study
2.2. Types of Net Cages Commonly Used in Taiwan
2.3. Numerical Model
2.4. Flowchart of the Numerical Model
3. Results
3.1. Engineering Analysis of Two Common Types of Net Cages
3.2. Evaluation of the Submersible Function
3.3. Yearly Probability of Remaining Volumes of Cages
3.3.1. Under Current-Only Condition
3.3.2. Under Combined Waves and Currents Condition
3.4. Influence of Water Depths on Site Selection
3.5. Influence of the Failure of a Mooring Line on Cages
3.5.1. Under Current-Only Condition
3.5.2. Under Combined Waves and Currents Condition
3.6. Influence of the Anchor Sinking on Cages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.T.; Afero, F.; Hung, C.W.; Chen, B.Y.; Nan, F.H.; Chiang, W.S.; Tang, H.J.; Kang, C.K. Economic feasibility assessment of cage aquaculture in offshore wind power generation areas in Changhua County, Taiwan. Aquaculture 2022, 548, 737611. [Google Scholar] [CrossRef]
- Fredriksson, D.W.; Swift, M.R.; Irish, J.D.; Tsukrov, I.; Celikkol, B. Fish cage and mooring system dynamics using physical and numerical models with field measurements. Aquac. Eng. 2003, 27, 117–146. [Google Scholar] [CrossRef]
- Lader, P.F.; Enerhaug, B. Experimental investigation of forces and geometry of a net cage in uniform flow. IEEE J. Ocean. Eng. 2005, 30, 79–84. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Li, Y.C.; Dong, G.H.; Gui, F.K.; Teng, B. A numerical study on dynamic properties of the gravity cage in combined wave-current flow. Ocean Eng. 2007, 34, 2350–2363. [Google Scholar] [CrossRef]
- Huang, C.C.; Tang, H.J.; Liu, J.Y. Effects of waves and currents on gravity-type cages in the open sea. Aquac. Eng. 2008, 38, 105–116. [Google Scholar] [CrossRef]
- Kristiansen, T.; Faltinsen, O.M. Modelling of current loads on aquaculture net cages. J. Fluids Struct. 2012, 34, 218–235. [Google Scholar] [CrossRef]
- Moe-Føre, H.; Lader, P.F.; Lien, E.; Hopperstad, O.S. Structural response of high solidity net cage models in uniform flow. J. Fluids Struct. 2016, 65, 180–195. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, H. Fluid-structure interactions of cage based aquaculture: From structures to organisms. Ocean Eng. 2020, 217, 107961. [Google Scholar] [CrossRef]
- Guo, Y.C.; Mohapatra, S.C.; Guedes Soares, C. Review of developments in porous membranes and net-type structures for breakwaters and fish cages. Ocean Eng. 2020, 200, 107027. [Google Scholar] [CrossRef]
- Sam Boggs, J. Sand-Wave Fields in Taiwan Strait. Geology 1974, 2, 251–253. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.W.; Han, W.C.; Lo, S.C. Characteristics of Sand Waves of the Changyun Sand Ridge and Taiwan Shoal in the Taiwan Strait. Mar. Res. 2021, 1, 1–23. [Google Scholar]
- Tang, H.J.; Yeh, P.H.; Huang, C.C.; Yang, R.Y. Numerical study of the mooring system failure of aquaculture net cages under irregular waves and current. Ocean Eng. 2020, 216, 108110. [Google Scholar] [CrossRef]
- Huang, C.C.; Tang, H.J.; Wang, B.S. Numerical modeling for an in situ single-point-mooring cage system. IEEE J. Ocean. Eng. 2010, 35, 565–573. [Google Scholar] [CrossRef]
- Løland, G. Current Forces on and Flow through Fish Farms. Ph.D. Thesis, The Norwegian Institute of Technology, Trondheim, Norway, 1991. [Google Scholar]
- Taipower. Instructions for Coastal Utilization and Management of the First Phase of Offshore Wind Power Generation Project; Taiwan Power Company: Taiwan, China, 2017. (In Chinese) [Google Scholar]
- DNV GL-OS-E301; Offshore Standards. Position Mooring: Bærum, Norway, 2018.
- Taipower. Feasibility Study on the Second Phase of Offshore Wind Power Generation Project; Taiwan Power Company: Taiwan, China, 2018. (In Chinese) [Google Scholar]
- Cheng, H.; Li, L.; Ong, M.C.; Aarsæther, K.G.; Sim, J. Effects of mooring line breakage on dynamic responses of grid moored fish farms under pure current conditions. Ocean Eng. 2021, 237, 109638. [Google Scholar] [CrossRef]
- DeCew, J.; Fredriksson, D.W.; Lader, P.F.; Chambers, M.; Howell, W.H.; Osienki, M.; Celikkol, B.; Frank, K.; Høy, E. Field measurements of cage deformation using acoustic sensors. Aquac. Eng. 2013, 57, 114–125. [Google Scholar] [CrossRef]
- Klebert, P.; Patursson, Ø.; Endresen, P.C.; Rundtop, P.; Birkevold, J.; Rasmussen, H.W. Three-dimensional deformation of a large circular flexible sea cage in high currents: Field experiment and modeling. Ocean Eng. 2015, 104, 511–520. [Google Scholar] [CrossRef]
- Dong, S.; Park, S.G.; Kitazawa, D.; Zhou, J.; Yoshida, T.; Li, Q. Model tests and full-scale sea trials for drag force and deformation of a marine aquaculture net cage. Ocean Eng. 2021, 240, 109941. [Google Scholar] [CrossRef]
- Bi, C.W.; Zhao, Y.P.; Sun, X.X.; Zhang, Y.; Guo, Z.X.; Wang, B.; Dong, G.H. An efficient artificial neural network model to predict the structural failure of high-density polyethylene offshore net cages in typhoon waves. Ocean Eng. 2020, 196, 106793. [Google Scholar] [CrossRef]
- Shi, X.W.; Zhao, Y.P.; Bi, C.W.; Liu, B.; Fan, Z.Q.; Zhou, S.H.; Jia, N. Failure probability of offshore high-density polyethylene net cages under typhoon waves. Aquac. Eng. 2022, 98, 102254. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Lan, L.; Bi, C.W.; Xu, Z. Digital twin for rapid damage detection of a fixed net panel in the sea. Comput. Electron. Agric. 2022, 200, 107247. [Google Scholar] [CrossRef]
- Liu, H.H.; Bi, C.W.; Zhao, Y.P. Experimental and numerical study of the hydrodynamic characteristics of a semisubmersible aquaculture facility in waves. Ocean Eng. 2020, 214, 107714. [Google Scholar] [CrossRef]
- Liu, H.H.; Bi, C.W.; Xu, Z.; Zhao, Y.P. Hydrodynamic assessment of a semi-submersible aquaculture platform in uniform fluid environment. Ocean Eng. 2021, 237, 109656. [Google Scholar] [CrossRef]
Scenario | Wave Height (m) | Wave Period (s) | Current (m/s) | Depth (m) |
---|---|---|---|---|
Typhoon waves | 7.32 | 12.53 | 1.0 | 26 |
Monsoon waves | 3.0 | 7.5 | 0.5 | 26 |
Component | Size and Materials | Value |
---|---|---|
Floating collar | Inner circumference (m) | 60 |
Outer circumference (m) | 64.8 | |
Tube diameter (m) | 0.25 | |
Material | HDPE | |
Buoy | Diameter (m) | 0.91 |
Height (m) | 1.3 | |
Buoyance (kN) | 8.5 | |
Total mass (kg) | 41 | |
Material | HDPE | |
Mooring line | Diameter (m) | 0.05 |
Unit mass (m/kg) | 304/200 | |
Minimum breaking load (kN) | 413 | |
Material | Nylon | |
Netting | Twine diameter (m) | 0.0021 |
Mesh size (m) | 0.0604 | |
Solidity (m) | 0.14 | |
Net depth (m) | 10 | |
Material | Nylon | |
Tube sinker | Circumference (m) | 64.8 |
Tube diameter (m) | 0.2 | |
Inserted chain (kg/m) | 13 | |
Material | HDPE |
Component | Size and Materials | Value |
---|---|---|
Floater | Length (m) | 0.909 |
Width (m) | 0.606 | |
Height (m) | 0.454 | |
Material | Styrofoam | |
Mooring line | Diameter (m) | 0.05 |
Unit mass (m/kg) | 304/200 | |
Material | Nylon | |
Netting | Twine diameter (m) | 0.0021 |
Mesh size (m) | 0.0604 | |
Solidity (m) | 0.14 | |
Net depth (m) | 10 | |
Material | Nylon | |
Sinker | Mass (kg) | 25 × 4 |
Material | Stone |
Cage Number | Floating (%) | Submersible (%) |
---|---|---|
1 | 78–93 | 89–98 |
2 | 80–93 | 92–98 |
3 | 78–93 | 89–98 |
4 | 80–93 | 92–98 |
Numerical Simulation | Probability (%) | |||||||
---|---|---|---|---|---|---|---|---|
Velocity (m/s) | Cage No. | Minimum Remaining Volume (%) | Velocity (m/s) | Spring (March–May) | Summer (June–August) | Fall (September–November) | Winter (December–February) | Yearly |
0.25 | 1 | 99.6 | >0.25 | 56.8 | 55.8 | 60.7 | 62.0 | 58.8 |
2 | 100.0 | |||||||
3 | 99.6 | |||||||
4 | 100.0 | |||||||
0.50 | 1 | 84.3 | >0.50 | 18.6 | 23.5 | 24.3 | 24.5 | 22.7 |
2 | 93.0 | |||||||
3 | 84.3 | |||||||
4 | 93.0 | |||||||
0.75 | 1 | 62.7 | >0.75 | 0.8 | 2.4 | 3.3 | 2.2 | 2.2 |
2 | 76.5 | |||||||
3 | 62.7 | |||||||
4 | 76.5 | |||||||
1.00 | 1 | 46.0 | >1.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 59.6 | |||||||
3 | 46.0 | |||||||
4 | 59.6 |
Probability (%) | Wave Height (m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | >5.0 | ||
Wave period (s) | 5.0 | 0.9 | 0.6 | 0.1 | ||||||||
6.0 | 24 | 8.7 | 3.7 | 2.8 | 2.2 | 1.2 | 0.6 | 0.3 | 0.1 | |||
7.0 | 5.6 | 6.1 | 5.5 | 6.8 | 7.3 | 6.1 | 5.5 | 3 | 1.6 | 0.7 | 0.4 | |
8.0 | 0.2 | 0.5 | 0.6 | 1.1 | 1.1 | 0.7 | 0.4 | 0.4 | 0.2 | 0.3 | ||
9.0 | 0.3 | 0.1 | 0.1 | 0.1 | ||||||||
>9.0 |
Mooring | Intact State | Failed State (#1) | Tension Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Velocity (m/s) | 0.25 | 0.5 | 0.75 | 1.0 | 0.25 | 0.5 | 0.75 | 1.0 | 0.25 | 0.5 | 0.75 | 1.0 |
Anchor No. | Maximum Tension (kN) | Failed Tension/Intact Tension | ||||||||||
#1 | 2.61 | 9.75 | 21.01 | 35.02 | - | - | - | - | - | - | - | - |
#2 | 4.52 | 16.58 | 33.28 | 54.46 | 6.88 | 25.34 | 48.99 | 80.57 | 1.52 | 1.53 | 1.47 | 1.48 |
#3 | 2.61 | 9.75 | 21.01 | 35.02 | 2.65 | 10.20 | 22.91 | 38.31 | 1.02 | 1.05 | 1.09 | 1.09 |
#4 | 0.80 | 0.83 | 0.94 | 0.69 | 0.80 | 0.83 | 0.94 | 0.69 | 1.00 | 1.00 | 1.00 | 1.00 |
#5 | 0.65 | 0.95 | 0.75 | 0.83 | 0.65 | 0.95 | 0.75 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 |
#6 | 0.68 | 0.62 | 0.81 | 0.74 | 0.68 | 0.62 | 0.81 | 0.74 | 1.00 | 1.00 | 1.00 | 1.00 |
#7 | 1.29 | 4.02 | 7.88 | 12.82 | 1.25 | 3.80 | 7.58 | 12.73 | 0.97 | 0.95 | 0.96 | 0.99 |
#8 | 1.29 | 3.58 | 6.63 | 10.33 | 3.24 | 9.87 | 17.42 | 26.17 | 2.51 | 2.76 | 2.63 | 2.53 |
#9 | 0.70 | 1.87 | 3.51 | 5.67 | 0.77 | 2.27 | 5.68 | 9.87 | 1.10 | 1.21 | 1.62 | 1.74 |
#10 | 1.29 | 4.02 | 7.88 | 12.82 | 3.13 | 8.93 | 15.05 | 21.56 | 2.43 | 2.22 | 1.91 | 1.68 |
#11 | 1.29 | 3.58 | 6.63 | 10.33 | 1.32 | 3.69 | 7.56 | 12.84 | 1.02 | 1.03 | 1.14 | 1.24 |
#12 | 0.70 | 1.87 | 3.51 | 5.67 | 0.73 | 1.85 | 3.46 | 5.59 | 1.04 | 0.99 | 0.99 | 0.99 |
Mooring | Intact | #1 Failed | #2 Failed | |||
---|---|---|---|---|---|---|
Sea States | Typhoon | Monsoon | Typhoon | Monsoon | Typhoon | Monsoon |
Anchor No. | Maximum Tension (kN) | |||||
#1 | 119 | 32 | - | - | 175 | 46 |
#2 | 170 | 51 | 221 | 66 | - | - |
#3 | 119 | 32 | 127 | 33 | 175 | 46 |
#4 | 7 | 4 | 7 | 4 | 7 | 4 |
#5 | 15 | 4 | 15 | 4 | 15 | 4 |
#6 | 8 | 4 | 8 | 4 | 8 | 4 |
#7 | 30 | 18 | 38 | 18 | 41 | 20 |
#8 | 40 | 17 | 64 | 26 | 42 | 18 |
#9 | 26 | 13 | 38 | 17 | 30 | 13 |
#10 | 30 | 18 | 39 | 21 | 41 | 20 |
#11 | 40 | 17 | 43 | 16 | 42 | 18 |
#12 | 26 | 13 | 24 | 13 | 30 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.-J.; Chiang, W.-S.; Nan, F.-H. Engineering Feasibility Assessment of Cage Aquaculture in Offshore Wind Power Generation Areas in Taiwan. Sustainability 2022, 14, 11705. https://doi.org/10.3390/su141811705
Tang H-J, Chiang W-S, Nan F-H. Engineering Feasibility Assessment of Cage Aquaculture in Offshore Wind Power Generation Areas in Taiwan. Sustainability. 2022; 14(18):11705. https://doi.org/10.3390/su141811705
Chicago/Turabian StyleTang, Hung-Jie, Wen-Son Chiang, and Fan-Hua Nan. 2022. "Engineering Feasibility Assessment of Cage Aquaculture in Offshore Wind Power Generation Areas in Taiwan" Sustainability 14, no. 18: 11705. https://doi.org/10.3390/su141811705