Interactions of Environmental Variables and Water Use Efficiency in the Matopiba Region via Multivariate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Remote Sensing Data
2.3. Estimate of Water Use Efficiency (WUE)
2.4. Methods
Principal Component Analysis (PCA) Applied to Environmental and Meteorological Data
- LST and WUE (ratio between GPP and ET), based on MODIS orbital products;
- Rainfall, based on CHIRPS precipitation product;
- Elevation, Roughness, and Slope of the GMTED and SRTM version 4.1 products;
- Geographic data, based on Latitude and Longitude.
3. Results
3.1. Principal Component Analysis
3.2. Spatio-Temporal Variation of LULC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Folberth, C.; Khabarov, N.; Balkovič, J.; Skalský, R.; Visconti, P.; Ciais, P.; Obersteiner, M. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 2020, 3, 281–289. [Google Scholar] [CrossRef]
- Junior, C.A.D.S.; Costa, G.D.M.; Rossi, F.S.; Vale, J.C.E.D.; de Lima, R.B.; Lima, M.; de Oliveira-Junior, J.F.; Teodoro, P.E.; Santos, R.C. Remote sensing for updating the boundaries between the brazilian Cerrado-Amazonia biomes. Environ. Sci. Policy 2019, 101, 383–392. [Google Scholar] [CrossRef]
- Correia Filho, W.L.F.; de Oliveira-Júnior, J.F.; Junior, C.A.D.S.; Santiago, D.D.B. Influence of the El Niño–Southern Oscillation and the sypnotic systems on the rainfall variability over the Brazilian Cerrado via Climate Hazard Group InfraRed Precipitation with Station data. Int. J. Clim. 2021, 42, 3308–3322. [Google Scholar] [CrossRef]
- Barros Santiago, D.; Barbosa, H.A.; Correia Filho, W.L.F. Alterações na eficiência do uso da água relacionadas com fatores climáticos e uso e ocupação do solo, na região do MATOPIBA. Pesqui. Soc. Desenvol. 2021, 10, e3010917891. [Google Scholar]
- Li, G.; Chen, W.; Li, R.; Zhang, X.; Liu, J. Assessing the spatiotemporal dynamics of ecosystem water use efficiency across China and the response to natural and human activities. Ecol. Indic. 2021, 126, 107680. [Google Scholar] [CrossRef]
- Beer, C.; Ciais, P.; Reichstein, M.; Baldocchi, D.; Law, B.; Papale, D.; Soussana, J.-F.; Ammann, C.; Buchmann, N.; Frank, D.; et al. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 2009, 23, 3233. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Zhang, S.; Wang, J.; Bai, Y.; Yao, F.; Guo, H. The potential of remote sensing-based models on global water-use efficiency estimation: An evaluation and intercomparison of an ecosystem model (BESS) and algorithm (MODIS) using site level and upscaled eddy covariance data. Agric. For. Meteorol. 2020, 287, 107959. [Google Scholar] [CrossRef]
- Sun, H.; Bai, Y.; Lu, M.; Wang, J.; Tuo, Y.; Yan, D.; Zhang, W. Drivers of the water use efficiency changes in China during 1982–2015. Sci. Total Environ. 2021, 799, 149145. [Google Scholar] [CrossRef]
- Yuan, L.; Lv, Z.; Adams, M.J.; Olsen, S.K. Crystal structures of an E1–E2–ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat. Commun. 2021, 12, 22598. [Google Scholar] [CrossRef]
- Jassal, R.S.; Black, T.A.; Spittlehouse, D.L.; Brümmer, C.; Nesic, Z. Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agric. For. Meteorol. 2009, 149, 1168–1178. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Desai, A.R.; Nagy, Z.; Luo, J.; Kolb, T.E.; Olioso, A.; Xu, X.; Yao, L.; Kutsch, W.; et al. How Is Water-Use Efficiency Of Terrestrial Ecosystems Distributed And Changing On Earth? Sci. Rep. 2015, 4, 7483. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.J.; Yu, G.R.; Wang, Q.F.; Hu, Z.M.; Zheng, H.; Li, S.G.; Hao, Y.B. Spatial variability of water use efficiency in China’s terrestrial ecosystems. Glob. Planet. Chang. 2015, 129, 37–44. [Google Scholar] [CrossRef]
- Mbava, N.; Mutema, M.; Zengeni, R.; Shimelis, H.; Chaplot, V. Factors affecting crop water use efficiency: A worldwide meta-analysis. Agric. Water Manag. 2019, 228, 105878. [Google Scholar] [CrossRef]
- Zuomin, S.; Ruimei, C.; Shirong, L. Response of leaf# delta#~(13) C to altitudinal gradients and its mechanism. Acta Ecol. Sin. 2004, 24, 2901–2906. [Google Scholar]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Xue, B.-L.; Guo, Q.; Otto, A.; Xiao, J.; Tao, S.; Li, L. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere 2015, 6, art174. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Zeng, Z.; Peng, S.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Yao, Y.; et al. Seasonal responses of terrestrial ecosystem water-use efficiency to climate change. Glob. Chang. Biol. 2016, 22, 2165–2177. [Google Scholar] [CrossRef] [PubMed]
- Woodward, F.I. Climate and Plant Distribution; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Martinez-Vilalta, J.; Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob. Planet. Chang. 2016, 144, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Delgado, R.C.; Pereira, M.G.; Teodoro, P.E.; dos Santos, G.L.; de Carvalho, D.C.; Magistrali, I.C.; Vilanova, R.S. Seasonality of gross primary production in the Atlantic Forest of Brazil. Glob. Ecol. Conserv. 2018, 14, 392. [Google Scholar] [CrossRef]
- Pugnaire, F.I.; Morillo, J.A.; Peñuelas, J.; Reich, P.B.; Bardgett, R.D.; Gaxiola, A.; Wardle, D.A.; van der Putten, W.H. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [Green Version]
- van Meijl, H.; Havlik, P.; Lotze-Campen, H.; Stehfest, E.; Witzke, P.; Domínguez, I.P.; Bodirsky, B.L.; van Dijk, M.; Doelman, J.; Fellmann, T.; et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 2018, 13, 064021. [Google Scholar] [CrossRef] [Green Version]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Hannah, L.; Roehrdanz, P.R.; C., K.B.K.; Fraser, E.D.G.; Donatti, C.I.; Saenz, L.; Wright, T.M.; Hijmans, R.J.; Mulligan, M.; Berg, A.; et al. The environmental consequences of climate-driven agricultural frontiers. PLoS ONE 2020, 15, e0228305. [Google Scholar] [CrossRef] [PubMed]
- CONAB-Companhia Nacional de Abastecimento; INMET-Instituto Nacional de Meteorologia. Culturas de verão-safra 2013/2014: Região do MATOPIBA: Sul do Estado de Maranhão, Leste do Estado do Tocantins, Sudoeste do Estado do Piauí e extremo Oeste do Estado da Bahia. Bolet. Monit. Agríc. 2014, 3, 1–24. [Google Scholar]
- Miranda, E.E.; Magalhães, L.A.; Carvalho, C.A. Nota técnica nº 1: Proposta de Delimitação Territorial do Matopiba. Embrapa. 2014. Available online: https://www.embrapa.br/gite/publicacoes/NT1_DelimitacaoMatopiba.pdf (accessed on 18 May 2022).
- Ribeiro, L.C.D.S.; Lôbo, A.S.; Silva, L.D.D.; Andrade, N.F.S. Padrões de crescimento econômico dos municípios do MATOPIBA. Rev. Econom. Sociol. Rural 2020, 58. [Google Scholar] [CrossRef]
- Sá, H.A.; Morais, L.; Campos, C.S.S. Que desenvolvimento é esse? Análise da expansão do agronegócio da soja na área do MATOPIBA a partir de uma perspectiva furtadiana. In Proceedings of the Anais do XXI Congresso Brasileiro de Economia, Curitiba, Brazil, 9–11 September 2015. [Google Scholar]
- Ceccato, P.N.; Dinku, T. Introduction to Remote Sensing for Monitoring Rainfall, Temperature, Vegetation and Water Bodies; IRI Technical Report 10-04; International Research Institute for Climate and Society: Palisades, NY, USA, 2010. [Google Scholar]
- Zahran, S.A.E.-S.; Saeed, R.A.-H.; Elazizy, I.M. Remote sensing based water resources and agriculture spatial indicators system. Egypt. J. Remote Sens. Space Sci. 2022, 25, 515–527. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Spagnolo, T.; Couto Junior, A.F. Expansão da agricultura irrigada por pivô central no Cerrado entre os anos de 1984 e 2008. In Proceedings of the Brazilian Symposium of Remote Sensing (SBSR), XVI, Foz do Iguaçú, Brazil, 13–18 April 2013; pp. 712–719. [Google Scholar]
- Weber, E.; Hasenack, H.; Ferreira, C.J.S. Adaptação do Modelo Digital de Elevação do Srtm Para O Sistema de Referência Oficial Brasileiro E Recorte Por Unidade da Federação; UFRGS Centro de Ecologia: Porto Alegre, Brazil, 2004; Available online: https://sosgisbr.com/2011/06/18/modelos-digitais-de-elevacao-do-srtm-no-formato-geotiff/ (accessed on 3 June 2022).
- Lima, J.E.F.W. Situação E Perspectivas Sobre As Águas Do Cerrado. Ciência Cult. 2011, 63, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, D.; Novais, G. Clima do Cerrado: Dinâmica atmosférica e características, variabilidades e tipologias climáticas. Élisée Rev. Geogr. UEG 2020, 9, e922021. [Google Scholar]
- Lumbreras, J.F.; Carvalho Filho, A.; Motta, P.E.F.; Barros, A.H.C.; Aglio, M.L.D.; Dart, R.; De, O.; Silveira, H.L.F.; Quartaroli, C.F.; Almeida, R.E.M.; et al. Aptidão agrícola das terras do Matopiba; Embrapa Solos. Documentos, 179; Embrapa Solos: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Mingoti, R.; Brasco, M.A.; Holler, W.A.; Lovisi Filho, E.; Spadotto, C.A. Matopiba: Caracterização das Áreas com Grande Produção de Culturas Anuais. 2014. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/991059/matopiba-caracterizacao-das-areas-com-grande-producao-de-culturas-anuais (accessed on 23 May 2022).
- Oliveira, G.; Brunsell, N.; Moraes, E.C.; Shimabukuro, Y.E.; Bertani, G.; Dos Santos, T.V.; Aragao, L.E.O.C. Evaluation of MODIS-based estimates of water-use efficiency in Amazonia. Int. J. Remote Sens. 2017, 38, 5291–5309. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation With Record For Monitoring Extremes. Sci. Data 2015, 2, 10–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Trejo, F.J.; Barbosa, H.; Kumar, T.L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid. Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 3 January 2021)ISBN 3-900051-07-0.
- Quantum GIS Geographic Information System, V. 3.4.6. Open Source Geospatial Foundation Project. 2019. Available online: https://qgis.org/pt_BR/site/ (accessed on 10 January 2021).
- Diaz, M.B.; Roberti, D.R.; Carneiro, J.V.; Souza, V.D.A.; de Moraes, O.L.L. Dynamics of the superficial fluxes over a flooded rice paddy in southern Brazil. Agric. For. Meteorol. 2019, 276–277, 107650. [Google Scholar] [CrossRef]
- Xiangyang, S.; Genxu, W.; Mei, H.; Ruiying, C.; Zhaoyong, H.; Chunlin, S.; Juying, S. The asynchronous response of carbon gain and water loss generate spatio-temporal pattern of WUE along elevation gradient in southwest China. J. Hydrol. 2020, 581, 124389. [Google Scholar] [CrossRef]
- Wang, L. An analytical reductionist framework to separate the effects of climate change and human activities on variation in water use efficiency. Sci. Total Environ. 2020, 727, 138306. [Google Scholar] [CrossRef]
- Correia Filho, W.L.F.; da Silva Aragão, M.R. Padrões temporais do vento à superfície em mesorregiões do estado da Bahia. Ciênc. Nat. 2014, 36, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.D.S.; De Oliveira-Júnior, J.F.; Dos Santos, P.J.; Correia Filho, W.L.F.; De Gois, G.; Blanco, C.J.C.; Teodoro, P.E.; da Silva, C.A., Jr.; Santiago, D.D.B.; Souza, E.D.O.; et al. Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. Int. J. Climatol. 2021, 41, E2111–E2135. [Google Scholar] [CrossRef]
- Kaiser, H.F. A second generation little jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J.; Little, J.; Mark, I. Educational and psychological measurement. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Fávero, L.P.; Belfiore, P.; Da Silva, F.L.; Chan, B.L. Análise de Dados: Modelagem Multivariada Para Tomada de Decisões; Elsevier: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Correia Filho, W.L.F.; de Oliveira-Júnior, J.F.; dos Santos, C.T.B.; Batista, B.A.; Santiago, D.D.B.; Junior, C.A.D.S.; Teodoro, P.E.; da Costa, C.E.S.; da Silva, E.B.; Freire, F.M. The influence of urban expansion in the socio-economic, demographic, and environmental indicators in the City of Arapiraca-Alagoas, Brazil. Remote Sens. Appl. Soc. Environ. 2022, 25, 100662. [Google Scholar] [CrossRef]
- Buainain, A.M.; Garcia, J.R.; Vieira Filho, J.E.R. A economia agropecuária do Matopiba: Agricultural economy of Matopiba. Estud. Soc. Agric. 2018, 26, 376–401. [Google Scholar]
- Sampaio, M.D.A.P. Oeste da Bahia: Agricultura globalizada, desterritorialização e movimentos políticos emancipatórios. Geogr. Atos Online 2019, 8, 8–32. [Google Scholar] [CrossRef]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Sáez, K.; de la Barrera, F.; Arumí, J.L. Understanding agricultural water footprint variability to improve water management in Chile. Sci. Total Environ. 2019, 670, 188–199. [Google Scholar] [CrossRef]
- Silva, S.; Neves, E. Importância do manejo da irrigação. Enciclopéd. Biosf. 2020, 17. [Google Scholar] [CrossRef]
- Chen, A.; Huang, L.; Liu, Q.; Piao, S. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Chang. Biol. 2021, 27, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Collados-Lara, A.J.; Fassnacht, S.R.; Pulido-Velazquez, D.; Pfohl, A.K.; Morán-Tejeda, E.; Venable, N.B.; Puntenney-Desmond, K. Intra-day variability of temperature and its near-surface gradient with elevation over mountainous terrain: Comparing MODIS land surface temperature data with coarse and fine scale near-surface measurements. Int. J. Climatol. 2021, 41, E1435–E1449. [Google Scholar] [CrossRef]
- Kattel, D.B.; Yao, T. Temperature-topographic elevation relationship for high mountain terrain: An example from the southeastern Tibetan Plateau. Int. J. Clim. 2018, 38, e901–e920. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Batelaan, O.; McVicar, T.R.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ge, Q.; Zheng, J. Impacts and lags of global warming on vegetation in Beijing for the last 50 years based on remotely sensed data and phonological information. Chin. J. Ecol. 2005, 24, 123. [Google Scholar]
- Zhu, W.; Mao, F.; Xu, Y.; Zheng, J.; Song, L. Analysis on response of vegetation index to climate change and its prediction in the three-rivers-source region. Plateau Meteorol. 2019, 38, 693–704. [Google Scholar]
- Zhong, R.; Wang, P.; Mao, G.; Chen, A.; Liu, J. Spatiotemporal variation of enhanced vegetation index in the Amazon Basin and its response to climate change. Phys. Chem. Earth Parts ABC 2021, 123, 103024. [Google Scholar] [CrossRef]
- Ju–lin, G.; Tao, Z.; Zhi-gang, W.; Gai–ling, G.; Lei, F. The relationships of water use efficiency with leaf physiological characteristics in Gaodan grass. Acta Agron. Sin. 2007, 33, 455–460. [Google Scholar]
- Ponce-Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef]
- Yamori, W.; Hikosaka, K.; Way, D. Resposta à temperatura da fotossíntese em plantas C3, C4 e CAM: Aclimatação e adaptação à temperatura. Pesq. Fotossíntese 2013, 119, 101–117. [Google Scholar] [CrossRef]
- Xiao, G.; Zheng, F.; Qiu, Z.; Yao, Y. Impact of climate change on water use efficiency by wheat, potato and corn in semiarid areas of China. Agric. Ecosyst. Environ. 2013, 181, 108–114. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, U.N.; Ball, B.A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Chang. Biol. 2014, 21, 1407–1421. [Google Scholar] [CrossRef]
- Wilcox, K.R.; Blumenthal, D.M.; Kray, J.A.; Mueller, K.E.; Derner, J.D.; Ocheltree, T.; Porensky, L.M. Plant traits related to precipitation sensitivity of species and communities in semiarid shortgrass prairie. New Phytol. 2020, 229, 2007–2019. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, Z.-L.; Wang, X.; Xie, Y.; Ye, J.-S. Lagged precipitation effect on plant productivity is influenced collectively by climate and edaphic factors in drylands. Sci. Total Environ. 2020, 755, 142506. [Google Scholar] [CrossRef] [PubMed]
- Correia Filho, W.L.F.; Dos Santos, T.V.; Diogo, A.M.; De Amorim, R.F.C. Diagnóstico da Precipitação e EVI em Dois Eventos de Seca no Nordeste do Brasil. Rev. Depart. Geogr. 2018, 35, 102–112. [Google Scholar] [CrossRef]
- Doble, R.; Simmons, C.T.; Jolly, I.; Walker, G. Spatial relationships between vegetation cover and irrigation-induced groundwater discharge on a semi-arid floodplain, Australia. J. Hydrol. 2006, 329, 75–97. [Google Scholar] [CrossRef]
- Pyrgou, A.; Santamouris, M.; Livada, I. Spatiotemporal Analysis of Diurnal Temperature Range: Effect of Urbanization, Cloud Cover, Solar Radiation, and Precipitation. Climate 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Dalastra, G.M.D.; Echer, M.D.M.E.; Guimarães, V.F.G.; Brito, T.S.B.; Inagaki, A.M.I. Trocas gasosas e produtividade de tomateiro com diferentes hastes por planta. Ihering. Sér. Bot. 2020, 75, e2020020. [Google Scholar] [CrossRef]
- Yamori, W. Chapter 12: Photosynthesis and respiration. In Plant Factory, 2nd ed.; Elsevier: Amsterdam, The Netherlands; pp. 197–206. [CrossRef]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.-E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A.; et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xiao, X.; Zhang, Y.; Doughty, R.; Chen, B.; Zhao, B. Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007–2014. Sci. Total Environ. 2018, 639, 1241–1253. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, J.; Liang, W.; Yang, Y.; Liu, Y. Spatial–temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000–2010. Sci. Total Environ. 2016, 565, 105–122. [Google Scholar] [CrossRef]
- Giacomoni, H.M.; Mendes, C.A.B. Estimativa de Evapotranspiração Regional por meio de Técnicas de Sensoriamento Remoto Integradas a Modelo de Balanço de Energia. Rev. Brasil. Recur. Hídr. 2008, 13, 33–42. [Google Scholar]
- Landau, E.C.; Guimarães, D.P.; De Souza, D.L. Caracterização Ambiental das áreas com Agricultura Irrigada por pivôs Centrais na Região do Matopiba-Brasil, 1st ed.; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2014; p. 43. [Google Scholar]
- Colussi, J. MATOPIBA: Mudanças No Uso Da Terra Na Nova Fronteira. Master’s Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil, 2017; p. 99. [Google Scholar]
- Pereira, C.N.; Porcionato, G.L.; Castro, N. Aspectos socioeconômicos da região do MATOPIBA. Bol. Reg. Urban Ambient. IPEA 2018, 18, 47–60. [Google Scholar]
- CONAB-Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos, Safra 2018/19-Oitavo Levantamento. 2019; pp. 1–135. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 25 January 2021).
- IBGE–Instituto Brasileiro de Geografia e Estatística. 3° Levantamento Sistemático da Produção Agrícola (LSPA). 2018. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html (accessed on 10 January 2021).
Variables | KMO | Correlation PC1 | Contribution PC1 (%) |
---|---|---|---|
Elevation | 0.79 | 0.82 | 25.95 |
LST | 0.79 | 0.83 | 25.64 |
Rainfall | 0.79 | 0.78 | 25.55 |
WUE | 0.81 | −0.82 | 22.86 |
Variance Explained (%) | - | - | 65.77 |
Overall MSA = 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago, D.d.B.; Barbosa, H.A.; Correia Filho, W.L.F.; Oliveira-Júnior, J.F.d. Interactions of Environmental Variables and Water Use Efficiency in the Matopiba Region via Multivariate Analysis. Sustainability 2022, 14, 8758. https://doi.org/10.3390/su14148758
Santiago DdB, Barbosa HA, Correia Filho WLF, Oliveira-Júnior JFd. Interactions of Environmental Variables and Water Use Efficiency in the Matopiba Region via Multivariate Analysis. Sustainability. 2022; 14(14):8758. https://doi.org/10.3390/su14148758
Chicago/Turabian StyleSantiago, Dimas de Barros, Humberto Alves Barbosa, Washington Luiz Félix Correia Filho, and José Francisco de Oliveira-Júnior. 2022. "Interactions of Environmental Variables and Water Use Efficiency in the Matopiba Region via Multivariate Analysis" Sustainability 14, no. 14: 8758. https://doi.org/10.3390/su14148758