Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Contaminated Site
2.2. Robinia Pseudoacacia Seeds Germination Test
2.3. Phytoremediation of Sterile Material
3. Results and Discussion
3.1. Germination of Robinia pseudoacacia Seeds in Liquid Extracts
3.2. Germination and Development of Robinia pseudoacacia Seeds in Sterile Material
3.3. Phytoremediation of Sterile Material Using Robinia pseudoacacia
3.4. Sustainable Ecological Restoration of Sterile Dumps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being: Synthesis, 1st ed.; Island Press: Washington, DC, USA, 2005; pp. 1–24. [Google Scholar]
- Perrow, M.R.; Davy, A.J. Handbook of Ecological Restoration; Cambridge University Press: Cambridge, UK, 2002; Volume 1, pp. 3–206. [Google Scholar]
- Sangya, S.; Lawrence, K.; Pandey, A.K. Phytoremediation potential of Eichhornia Crassipes (Mart.) solms. Int. J. Environ. Agric. Biotech. 2016, 1, 210–217. [Google Scholar]
- Sur, I.M.; Micle, V. Zinc and copper extraction in soils polluted by in situ bioleaching. Acta Tech. Napoc. 2012, 1, 49–51. [Google Scholar]
- Boros, M.N.; Micle, V. Copper influence on germination and growth of sunflower (Helianthus annuus). Studia UBB Ambient. 2015, LX, 23–30. [Google Scholar]
- Nouri, J.; Khorasani, N.; Lorestani, B.; Karami, M.; Hassani, H.; Yousefi, N. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci. 2009, 59, 315–323. [Google Scholar] [CrossRef]
- Thomas, V.G. The environmental and ethical implications of lead shot contamination of rural lands in North America. J. Agric. Environ. Ethics 1997, 10, 41–54. [Google Scholar] [CrossRef]
- Ali, M.; Mindari, W. Efect of humic acid on soil chemical and physical characteristics of embankment. MATEC Web Conf. 2016, 58, 01028. [Google Scholar] [CrossRef]
- Babau, A.M.; Micle, V.; Damian, G.E.; Varvara, S. Health risk assessment analysis in two highly polluted minig areas from Zlatna (Romania). J. Environ. Prot. Ecol. 2017, 18, 1416–1424. [Google Scholar]
- Dong, J.; Wu, F.B.; Zhang, G.P. Effect of cadmium on growth and photosynthesis of tomato seedlings. J. Zhejiang Univ. Sci. 2005, 6, 974–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Qiu, R.; Zeng, X.; Fang, X.; Yu, F.; Zhou, X.; Wu, Y. Zn and Cd hyperaccumulating characteristics of Picris Divaricate. Int. J. Environ. Pollut. 2009, 38, 26–38. [Google Scholar] [CrossRef]
- Liu, Y.G.; Zhou, M.; Zeng, G.; Wang, X.; Li, X.; Fan, T.; Xu, W. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration. Bioresour. Technol. 2008, 99, 4124–4129. [Google Scholar] [CrossRef]
- Cairns, J. Ethical issues in ecological restoration. Ethics Sci. Environ. Politics 2003, 3, 50–61. [Google Scholar] [CrossRef]
- Romanian National Environmental Protection Agency. Annual Report on the State of the Environment in Romania for 2017; Environment Ministry: Bucuresti, Romania, 2018; pp. 254–276.
- Jones, H.P.; Jones, P.C.; Barbier, E.B.; Blackburn, R.C.; Benayas, J.R.M.; Holl, K.D.; McCrackin, M.; Meli, P.; Montoya, D.; Mateos, D.M. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B 2018, 285, 20172577. [Google Scholar] [CrossRef]
- Martin, D.M. Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 2017, 25, 668–673. [Google Scholar] [CrossRef]
- Morrison, D. Landscape restoration in response to previous disturbance. In Landscape Heterogeneity and Disturbance. Ecological Studies; Turner, M.G., Ed.; Springer: New York, NY, USA, 1987; Volume 64, pp. 159–172. [Google Scholar]
- Clewell, A.F.; Aronson, J. Ecological Restoration. Principles, Values, and Structure of an Emerging Profession; Island Press: Washington, DC, USA, 2007; pp. 15–87. [Google Scholar]
- Kates, R.W. What kind of a science is sustainability science? Proc. Natl. Acad. Sci. USA. 2011, 108, 19449–19450. [Google Scholar] [CrossRef] [Green Version]
- Holl, K.D.; Cairns, J.J. Monitoring and appraisal. In Handbook of Ecological Restoration. Principles and Restoration; Davy, A.J., Perrow, M.R., Eds.; Cambridge: Cambridge, UK, 2002; Volume 1, pp. 411–432. [Google Scholar]
- Vromans, K.; Paslack, R.; Isildar, G.Y.; Vrind, R.; Simon, J.W. Environmental Ethics: An Introduction and Learning Guide, 1st ed.; Routledge: London, UK, 2012; pp. 3–190. [Google Scholar]
- Damian, G.E.; Micle, V.; Sur, I.M.; Chirilă Băbău, A.M. From Environmental Ethics to Sustainable Decision-Making: Assessment of Potential Ecological Risk in Soils Around Abandoned Mining Areas-Case Study “Larga de Sus mine” (Romania). J. Agric. Environ. Ethics 2019, 32, 27–49. [Google Scholar] [CrossRef]
- Clements, D.R.; Shrestha, A. New Dimensions in Agroecology for Developing a Biological Approach to Crop Production. J. Crop Improv. 2004, 11, 1–20. [Google Scholar] [CrossRef]
- Vromans, K.; Istldar, G.Y.; Paslack, R.; Simon, J.; Vrind, R. Environmental Ethics—An Introduction and Learning Guide, 2nd ed.; Routledge: New York, NY, USA, 2017; pp. 3–190. [Google Scholar]
- Bes, C.; Mench, M. Remediation of cooper-contaminated top soils from a wood treatment facility using in situ stabilization. Environ. Pollut. 2008, 156, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Oros, V. Ecological Rehabilitation of Industrially Degraded Sites; Publishing House of the University of Transilvania: Brasov, Romania, 2002; pp. 134–153. [Google Scholar]
- Oros, V. Solid mining wastes. In Waste Management; Oros, V., Drăghici, C., Eds.; Publishing House of the University of Transilvania: Brasov, Romania, 2002; pp. 30–38. [Google Scholar]
- Shukla, O.P.; Juwarkar, A.A.; Singh, S.K.; Khan, S.; Rai, U.N. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manage. 2011, 31, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Marzban, L.; Akhzari, D.; Ariapour, A.; Mohammadparast, B.; Pessarakli, M. Effects of cadmium stress on seedlings of various rangelandplant species (Avena fatua L., Lathyrus sativus L., and Lolium temulentum L.): Growth physiological traits, and cadmium accumulation. J. Plant Nutr. 2017, 40, 2127–2137. [Google Scholar] [CrossRef]
- Salazar, M.J.; Pignata, M.L. Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J. Geochem. Explor. 2014, 137, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Lopareva-Pohu, A.; Verdin, A.; Garçon, G.; Lounes-Hadj, S.A.; Pourrut, B.; Debiane, D.; Waterlot, C.; Laruelle, F.; Bidar, G.; Douay, F.; et al. Influence of fly ash aided phytostabilization of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environ. Pollut. 2011, 159, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Kokyo, O.; Tiehua, C.; Tao, L.; Cheng, H. Study on Application of Phytoremediation Technology in Management and Remediation of Contaminated Soils. J. Clean Energy Technol. 2014, 2, 216–220. [Google Scholar]
- Zerkout, A.; Mustafa, M.; Ibrahim, M.H.; Omar, H. Influence of Lead on In vitro Seed Germination and Early Radicle Development of Acacia auriculiformis Cunn. Ex Benth Species. Annu. Res. Rev. Biol. 2018, 28, 1–12. [Google Scholar] [CrossRef]
- Bieby, V.T.; Siti, R.S.A.; Hassan, B.; Mushrifah, I.; Nurina, A.; Muhammad, M. A Review on Heavy Metals (As, Pb and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar]
- Buscaroli, A. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review). Ecol. Indic. 2017, 82, 367–380. [Google Scholar] [CrossRef]
- Hinchman, R.; Negri, M.C.; Gatliff, E.G. Phytoremediation: Using green plants to clean up contaminated soil, groundwater, and wastewater. In Proceedings of the Conference: 2. Argonne National Laboratory Technical Women’s Symposium, Argonne, IL, USA, 29–30 April 1996. [Google Scholar]
- Masu, S.; Grecu, E.; Popa, M.; Oncioiu, I. Aspects in situ oil polluted soil phytoremediation with pasture Plants. J. Environ. Prot. Ecol. 2017, 18, 1398–1402. [Google Scholar]
- Penkova, N.T.; Petkova, K. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J. Environ. Biol. 2015, 36, 59–63. [Google Scholar]
- Budău, R.; Timofte, C.S. Results of increased seedlings per unit area in the Robinia pseudoacacia species. Nat. Resour. Sustain. Dev. 2016, 6, 9–14. [Google Scholar]
- Budău, R.; Timofte, A.I.; Kopacz, N. Aspects regarding the Acacia culture in agroforestry system for the production of wood biomass. Ann. Univ. Oradea Fascicle Prot. Environ. 2014, XXIII, 337–344. [Google Scholar]
- Oros, V.; Coman, M.; Marian, M.; Mihaly, G.L.; Mihaly, A. Preliminary investigation aimed to ecological reclaiming by phytoremediation of a large flotation tailing dump in Baia Mare mining area. Environ. Eng. Manag. J. 2009, 8, 915–922. [Google Scholar] [CrossRef]
- Singh, O.V.; Labana, S.; Pandey, G.; Budhiraja, R.; Jain, R.K. Phytoremediation: An overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 2003, 61, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Salt, D.E.; Blaylock, M.; Kumar, P.B.A.N.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 1995, 13, 468–474. [Google Scholar] [CrossRef]
- Kvesitadze, G.; Khatisashvili, G.; Sadunishvili, I.; Ramsden, J.J. Biochemical Mechanisms of Detoxification in Higher Plants. Basis of Phytoremediation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 167–204. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments Biogeochemistry Bioavailability and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001; pp. 61–90. [Google Scholar]
- Baker, A.J.M.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soil and Water; Terry, N., Banuelos, G., Eds.; Lewis Publishers: London, UK, 2000; pp. 85–107. [Google Scholar]
- Vlachodimos, K.; Papatheodorou, E.M.; Diamantopoulos, J.; Monokrousos, N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ. Monit. Assess 2013, 185, 6921–6932. [Google Scholar] [CrossRef]
- Yurong, Y.; Yingying, S.; Henrik, V.S.; Ghosh, A.; Ban, Y.; Chen, H.; Tang, M. Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol. Biochem. 2015, 86, 146–158. [Google Scholar]
- Sajjad, H.M.; Mohammad, M.; Anoushirvan, S.G.; Zahedi, A.; Reza, M.F.; Fariba, R. Accumulation of heavy metal in Platanus Orientalis, Robinia Pseudoacacia and Fraxinus Rotundifolia. J. For. Res. 2013, 24, 391–395. [Google Scholar]
- Enescu, C.M.; Dănescu, A. Black locust (Robinia Pseudoacacia L.)—An invasive neophyte in the conventional land reclamation flora in Romania. Bull. Transilv. Univ. Braşov 2013, 6, 23–30. [Google Scholar]
- Varvara, S.; Popa, M.; Bostan, R.; Damian, G. Preliminary considerations on the adsorption of heavy metals from acidic mine drainage using natural zeolite. J. Environ. Prot. Ecol. 2013, 14, 1506–1514. [Google Scholar]
- Liao, M.; Hocking, P.J.; Dong, B.; Delhaize, E.; Richardson, A.E.; Ryan, P.R. Variation in early phosphorus-uptake efficiency among wheat genotypes grown on two contrasting Australian soils. Aust. J. Agric. Res. 2008, 59, 157–166. [Google Scholar] [CrossRef]
- Babau, M.A.; Micle, V.; Sur, I.M. Study on physico-chemical properties of soil in the Rades mine area. Sci. Papers. Ser. E. Land Reclam. Earth Obs. Surv. Environ. Eng. 2017, 6, 108–113. [Google Scholar]
- Boroş, M.; Micle, V. Effects of copper—induced stress on seed germination of Maize (Zea mays L.). Agric. Sci. Pract. 2015, 3, 495–496. [Google Scholar]
- Sur, I.M.; Micle, V.; Gabor, T. Heavy metals removal by bioleaching using Thiobacillus Ferrooxidans Rom. Biotechnol. Lett. 2018, 23, 13409–13416. [Google Scholar]
- Sierra, J.; Noel, C.; Dufour, L.; Ozier-Lafontaine, H.; Welcker, C.; Dsfontaines, L. Mineral nutrition and growth of tropical maize as affected by the soil acidity. Plant Soil 2003, 252, 215–226. [Google Scholar] [CrossRef]
- Chowdhury, S.; Bolan, N.; Farrell, M.; Sarkar, B.; Sarker, J.R.; Kirkham, M.; Hossain, M.Z.; Geon-Ha, K. Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Adv. Agron. 2021, 166, 131–196. [Google Scholar]
- Kisinyo, P.O.; Othieno, C.O.; Gudu, S.O.; Okalebo, J.R.; Opala, P.A.; NG’Etich, W.K.; Nyambati, R.O.; Ouma, E.O.; Agalo, J.J.; Kebeney, S.J.; et al. Immediate and residual effects of lime and phosphorus fertilizer on soil acidity and maize production in Western Kenya. Expl. Agric. 2014, 50, 128–143. [Google Scholar] [CrossRef]
- Stancu, P.T. Studies Geochemical and Mineralogical Changes Resulting from Secondary Processes of Mining and Remediation Technologies Areas Polluted with Heavy Metals and/or Rare in the Zlatna. Ph.D. Thesis, Faculty of Geology and Geophysics, Bucharest, Romania, 21 January 2014. [Google Scholar]
- Order No. 756 of 3 November 1997 for the Approval of the Regulation on Environmental Pollution Assessment. Eminent: Ministry of Waters, Forests and Environmental Protection. (Published in: Official Gazette No 303 bis of 6 November 1997). Available online: http://legislatie.just.ro/Public/DetaliiDocumentAfis/151788 (accessed on 5 February 2020). (In Romanian).
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Plant Biotechnol. Front. Plant Sci. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Light, A. Ecological restauration: From functional descriptions to normative prescriptions. In Functions in Biological Land Artificial Worlds: Comparative Philosophical Perspectives; Krohs, U., Kroes, P., Eds.; MIT Press: Cambridge, MA, USA, 2009; pp. 147–161. [Google Scholar]
- Higgs, E. Nature by Design: People, Natural Processes, and Ecological Restoration; MIT Press: Cambridge, MA, USA, 2003; pp. 26–34. [Google Scholar]
- Dancea, L.; Mazăre, V.; Niță, L.; Gaica, I.; Merce, L. What is Good Ecological Restoration? ProEnvironment 2011, 4, 285–288. [Google Scholar]
Liquid Extract | Composition of the Mixtures | Weight Ratios (g) |
---|---|---|
Liq.US a | Commercially uncontaminated soil | 1000 |
Liq.SM b | Sterile material | 1000 |
Liq.SM-CaCO3 c | Sterile material + CaCO3 | 950 + 50 |
Liq.SM-CaCO3-DS d | Sterile material + CaCO3 + dehydrated sludge | 550 + 50 + 400 |
Liq.SM-CaCO3-DS-N.P.K e | Sterile material + CaCO3 + dehydrated sludge + N.P.K. fertilizer | 525 + 50 + 400 + 25 |
Liq.SM-CaCO3-DS-N.P.K-KH2PO4 f | Sterile material + CaCO3 + dehydrated sludge + N.P.K fertilizer + KH2PO4 | 524.95 + 50 + 400 + 25 + 0.05 |
Mixture | Unit | Value of Pb Concentration | Value of Cd Concentration | Value of Cu Concentration |
---|---|---|---|---|
US a | mg kg−1 | <IDL b | <IDL b | <IDL b |
SM c | mg kg−1 | 3090.0 | 18.7 | 424.1 |
SM-CaCO3 | mg kg−1 | 1540.0 | 21.0 | 405.0 |
SM-CaCO3-DS d | mg kg−1 | 1550.0 | 17.6 | 225.0 |
SM-CaCO3-DS-N.P.K e | mg kg−1 | 2736.3 | 15.0 | 208.0 |
SM-CaCO3-DS-N.P.K-KH2PO4 f | mg kg−1 | 1487.0 | 18.0 | 196.3 |
DS d | mg kg−1 | <IDL b | <IDL b | <IDL b |
Liquid Extract | The Number of Seeds that Germinated | Development Parameters | Germination Rate (%) | ||||
---|---|---|---|---|---|---|---|
Plant Height (cm) | Root Length (cm) | Stem Length (cm) | Leaf Length (cm) | Number of Leaf (cm) | |||
Liq.US a | 5 | 6.5 | 3.5 | 2.0 | 1.0 | 1 | 55 |
1.5 | 0.5 | 1.0 | 0 | 0 | |||
3.5 | 2.0 | 1.5 | 0 | 0 | |||
9.2 | 5.0 | 3.0 | 1.2 | 2 | |||
8.5 | 5.5 | 2.0 | 1.0 | 2 | |||
Liq.SM b | 9 | 5.7 | 2.5 | 2.0 | 1.2 | 2 | 100 |
3.8 | 1.0 | 1.8 | 1.0 | 2 | |||
2.0 | 0.5 | 0.5 | 1.0 | 2 | |||
6.3 | 1.5 | 3.5 | 1.3 | 2 | |||
7.7 | 5.0 | 1.5 | 1.2 | 1 | |||
4.5 | 1.7 | 2 | 0.8 | 2 | |||
5.0 | 1.8 | 2.2 | 1.0 | 2 | |||
5,5 | 2.0 | 2.5 | 1.0 | 1 | |||
2.9 | 0.7 | 1.5 | 0.7 | 1 | |||
Liq.SM-CaCO3 c | 0 | - | - | - | - | - | 0 |
Liq.SM-CaCO3-DS d | 0 | - | - | - | - | - | 0 |
Liq.SM-CaCO3-DS-N.P.K e | 0 | - | - | - | - | - | 0 |
Liq.SM-CaCO3-DS-N.P.K-KH2PO4 f | 0 | - | - | - | - | - | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia. Sustainability 2021, 13, 14021. https://doi.org/10.3390/su132414021
Băbău AMC, Micle V, Damian GE, Sur IM. Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia. Sustainability. 2021; 13(24):14021. https://doi.org/10.3390/su132414021
Chicago/Turabian StyleBăbău, Adriana Mihaela Chirilă, Valer Micle, Gianina Elena Damian, and Ioana Monica Sur. 2021. "Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia" Sustainability 13, no. 24: 14021. https://doi.org/10.3390/su132414021