Determining Food Stability to Achieve Food Security
Abstract
:1. Introduction
- Attention to food security: ensure that objectives related to food security are incorporated into national strategies to reduce poverty, while considering each strategy’s impact at the country-, sub-national-, household-, and community-level;
- Promotion of sustainable and broad-based agricultural and rural growth: foster environmentally and socially sustainable development as a cornerstone of economic growth;
- Attend to the entire rural area: consider, in addition to agricultural production, other opportunities to enhance the economy and income apart from farming;
- Attention to the main causes of food insecurity: improve productivity together with accessibility to the land and human resources;
- Attention to the urban dimensions of food insecurity: address the factors responsible for urban poverty and increase food security in terms of food availability and access, food marketing, management of natural resources, and accessibility to basic services;
- Attention to political issues: take into account national and international policies and issues that impact the implementation and potential results of food security programs, including aspects such as public politics, peace, security, trade, and macroeconomic reforms;
- Encouragement of all stakeholders: engage all in food security-related dialogue that leads to the development of national strategies and ensures broad agreements on common food issues, objectives and solutions.
2. What Measures Can We Apply to Improve Food Stability?
2.1. Food Stability at Livestock Production to Achieve the Food Security
2.2. Food Stability of Products of Animal Origin to Achieve Food Security
2.2.1. Safety of Dry-Cured Meat Products
2.2.2. Contribution of Dry-Cured Meat Products to Food Stability
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weinroth, M.D.; Belk, A.D.; Belk, K.E. History, development, and current status of food safety systems worldwide. Anim. Front. 2018, 8, 9–15. [Google Scholar] [CrossRef]
- Abbots, E.-J.; Coles, B. Horsemeat-gate. Food Cult. Soc. 2013, 16, 535–550. [Google Scholar] [CrossRef]
- Pei, X.; Tandon, A.; Alldrick, A.; Giorgi, L.; Huang, W.; Yang, R. The China melamine milk scandal and its implications for food safety regulation. Food Policy 2011, 36, 412–420. [Google Scholar] [CrossRef]
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The Sources of Chemical Contaminants in Food and Their Health Implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Manning, L.; Soon, J.M. Food Safety, Food Fraud, and Food Defense: A Fast Evolving Literature. J. Food Sci. 2016, 81, R823–R834. [Google Scholar] [CrossRef] [Green Version]
- Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef]
- Moerman, S.F. Food Defense. In Food Control and Biosecurity, 1st ed.; Grumezescu, A., Holban, A.M., Eds.; Academic Press: London, UK, 2018; pp. 135–223. [Google Scholar]
- Wertheim-Heck, S.; Raneri, J.E.; Oosterveer, P. Food safety and nutrition for low-income urbanites: Exploring a social justice dilemma in consumption policy. Environ. Urban. 2019, 31, 397–420. [Google Scholar] [CrossRef] [Green Version]
- FAO. Rome Declaration on World Food Security. 1996. Available online: http://www.fao.org/3/w3613e/w3613e00.htm (accessed on 14 May 2021).
- FAO. Trade Reforms and Food Security. 2003. Available online: http://www.fao.org/3/y4671e/y4671e00.htm#Contents (accessed on 14 May 2021).
- Anderson, J.R. Concepts of stability in food security. In Encyclopedia of Food Security and Sutainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 8–15. [Google Scholar] [CrossRef]
- CWFS. Committee on World Food Security. Global Strategic Framework for Food Security and Nutrition. 2017. Available online: http://www.fao.org/3/MR173EN/mr173en.pdf (accessed on 12 June 2020).
- Stamoulis, K.; Zezza, A. A Conceptual Framework for National Agricultural, Rural Development, and Food Security Strategies and Policies. FAO 2003. Available online: http://www.fao.org/3/ae050e/ae050e00.htm (accessed on 27 June 2021).
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef]
- Ericksen, P.J. Conceptualizing food systems for global environmental change research. Glob. Environ. Chang. 2008, 18, 234–245. [Google Scholar] [CrossRef]
- Gullino, P.; Battisti, L.; Larcher, F. Linking multifunctionality and sustainability for valuing peri-urban farming: A case study in the Turin Metropolitan Area (Italy). Sustainability 2018, 10, 1625. [Google Scholar] [CrossRef] [Green Version]
- UN. Resolution Adopted by the General Assembly on 25 September 2015; Sustainable Development Goals: West Sussex, UK, 2019; pp. 333–374. [Google Scholar] [CrossRef]
- Mc Carthy, U.; Uysal, I.; Badia-Melis, R.; Mercier, S.; O’Donnell, C.; Ktenioudaki, A. Global food security—Issues, challenges and technological solutions. Trends Food Sci. Technol. 2018, 77, 11–20. [Google Scholar] [CrossRef]
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and future food security-A global perspective for livestock production. Land Degrad. Dev. 2019, 30, 561–573. [Google Scholar] [CrossRef]
- Abu Hatab, A.; Cavinato, M.E.R.; Lagerkvist, C.J. Urbanization, livestock systems and food security in developing countries: A systematic review of the literature. Food Secur. 2019, 11, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Pires, A.F.A.; Peterson, A.; Baron, J.N.; Adams, R.; Martínez-López, B.; Moore, D. Small-scale and backyard livestock owners needs assessment in the western United States. PLoS ONE 2019, 14, e0212372. [Google Scholar] [CrossRef]
- Kompas, T.; Nguyen, H.T.M.; Van Ha, P. Food and biosecurity: Livestock production and towards a world free of foot-and-mouth disease. Food Secur. 2015, 7, 291–302. [Google Scholar] [CrossRef]
- Dargatz, D.A.; Garry, F.B.; Traub-Dargatz, J.L. An introduction to biosecurity of cattle operations. Vet. Clin. N. Am. Food Anim. Pr. 2002, 18, 1–5. [Google Scholar] [CrossRef]
- Villarroel, A.; Dargatz, D.A.; Lane, V.M.; McCluskey, B.J.; Salman, M.D. Suggested outline of potential critical control points for biosecurity and biocontainment on large dairy farms. J. Am. Vet. Med. Assoc. 2007, 230, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Layton, D.S.; Choudhary, A.; Bean, A.G. Breaking the chain of zoonoses through biosecurity in livestock. Vaccine 2017, 35, 5967–5973. [Google Scholar] [CrossRef]
- McDermont, J.; Enahoro, D.; Herrero, M. Livestock futures to 2020: How will they shape food, environmental, health, and global security? In Food Security and Sociopolitical Stability, 1st ed.; Barret, C.B., Ed.; Oxford University Press: Oxford, UK, 2013; pp. 201–228. [Google Scholar]
- Chemineau, P. Invited review: Importance of animal health and welfare for the stability of the three pillars of sustainability of livestock systems. Adv. Anim. Biosci. 2016, 7, 208–214. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, S.; Liu, X.; Chen, K.Z. The Zoonotic diseases, agricultural production, and impact channels: Evidence from China. Glob. Food Secur. 2021, 28, 100463. [Google Scholar] [CrossRef]
- Can, M.F.; Altuğ, N. Socioeconomic implications of biosecurity practices in small-scale dairy farms. Vet. Q. 2014, 34, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Young, J.R.; Rast, L.; Suon, S.; Bush, R.D.; Henry, L.A.; Windsor, P.A. The impact of best practice health and husbandry interventions on smallholder cattle productivity in southern Cambodia. Anim. Prod. Sci. 2014, 54, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, C.; Nielsen, L.; Thomson, K.; Gunn, G. An exploration of the drivers to bio-security collective action among a sample of UK cattle and sheep farmers. Prev. Vet. Med. 2008, 87, 358–372. [Google Scholar] [CrossRef]
- Bussoni, A.; Alvarez, J.; Cubbage, F.; Ferreira, G.; Picasso, V. Diverse strategies for integration of forestry and livestock production. Agrofor. Syst. 2017, 93, 333–344. [Google Scholar] [CrossRef]
- Tildesley, M.J.; Brand, S.; Pollock, E.B.; Bradbury, N.V.; Werkman, M.; Keeling, M.J. The role of movement restrictions in limiting the economic impact of livestock infections. Nat. Sustain. 2019, 2, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. An. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Badger-Emeka, L.; Al-Mulhim, Y.; Al-Muyidi, F.; Busuhail, M.; Alkhalifah, S.; AlEid, N. An Investigation of potential health risks from zoonotic bacterial pathogens associated with farm rats. Environ. Health Insights 2020, 14. [Google Scholar] [CrossRef]
- Rushton, J. The economics of animal health scientific and technical review. Rev. Sci. Tech. 2017, 36, 35–358. [Google Scholar]
- Del Valle, M.M.; Ibarra, J.T.; Hörmann, P.A.; Hernández, R.; Riveros, F.J.L. Local Knowledge for Addressing Food Insecurity: The Use of a Goat Meat Drying Technique in a Rural Famine Context in Southern Africa. Animals 2019, 9, 808. [Google Scholar] [CrossRef] [Green Version]
- Xazela, N.M.; Hugo, A.; Marume, U.; Muchenje, V. Perceptions of rural consumers on the aspects of meat quality and health implications associated with meat consumption. Sustainability 2017, 9, 830. [Google Scholar] [CrossRef] [Green Version]
- Rush, E. Wicked problems: The challenge of food safety versus food security—Working towards the SDG goals? Eur. J. Clin. Nutr. 2019, 73, 1091–1094. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Patarata, L. Fermented meat products: From the technology to the quality control. In Fermented Food Products, 1st ed.; Sankaranarayanan, A., Amaresan, N., Dhanasekaran, D., Eds.; CRC press: Boca Raton, FL, USA, 2020; pp. 197–238. [Google Scholar]
- Campbell-Platt, G. Fermented foods. Origins and applications. In Encyclopaedia of food microbiology, 1st ed.; Robinson, R.K., Batt, C.A., Patel, P.D., Eds.; Academic Press: London, UK, 2000; pp. 736–738. [Google Scholar]
- Zeuthen, P.A. Historical perspective of meat fermentation. In Handbook of Fermented Meat and Poultry, 1st ed.; Toldrá, F., Hui, Y.H., Astiasarán, I., Nip, W.-K., Sebranek, J.G., Silveira, E.-T.F., Stahnke, L.H., Talon, R., Eds.; Blackwell Publishing: Ames, IA, USA, 2008; pp. 3–8. [Google Scholar]
- Hutkins, R.W. Microbiology and Technology of Fermented Foods, 1st ed.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 207–232. [Google Scholar]
- Caplice, E.; Fitzgeral, F.G. Food fermentation: Role of microrganisms in food production and preservation. Int. J. Food Microbiol. 1999, 50, 131–149. [Google Scholar] [CrossRef]
- Gagaoua, M.; Boudechicha, H.R. Ethnic meat products of the North African and Mediterranean countries: An overview. J. Ethnic. Foods 2018, 5, 83–98. [Google Scholar] [CrossRef]
- Kittisakulnam, S.; Saetae, D.; Suntornsuk, W. Antioxidant and antibacterial activities of spices traditionally used in fermented meat products. J. Food Process. Preserv. 2017, 41, e13004. [Google Scholar] [CrossRef]
- Alves, S.P.; Alfaia, C.M.; Škrbić, B.D.; Živančev, J.R.; Fernandes, M.J.; Bessa, R.J.; Fraqueza, M.J. Screening chemical hazards of dry fermented sausages from distinct origins: Biogenic amines, polycyclic aromatic hydrocarbons and heavy elements. J. Food Compos. Anal. 2017, 59, 124–131. [Google Scholar] [CrossRef]
- Munekata, P.E.; Pateiro, M.; Domínguez, R.; Santos, E.M.; Lorenzo, J.M. Cruciferous vegetables as sources of nitrate in meat products. Curr. Opin. Food Sci. 2020, 38, 1–7. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Verma, A.K.; Mehta, N.; Malav, O.P.; Kumar, D.; Sharma, N. Quality, functionality, and shelf life of fermented meat and meat products: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2844–2856. [Google Scholar] [CrossRef]
- Kameník, J. Hurdle technologies in fermented meat production. In Fermented Meat Products: Health Aspects, 1st ed.; Zdolec, N., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 95–126. [Google Scholar]
- Xavier, C.; Gonzales-Barron, U.; Paula, V.; Estevinho, L.; Cadavez, V. Meta-analysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Res. Int. 2014, 55, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Alimi, B.A. Risk factors in street food practices in developing countries: A review. Food Sci. Hum. Well 2016, 5, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Toldrá, F.; Nip, W.-K.; Hui, Y.H. Dry-fermented sausages. In Handbook of Fermented Meat and Poultry, 1st ed.; Toldrá, F., Hui, Y.H., Astiasarán, I., Nip, W.-K., Sebranek, J.G., Silveira, E.-T.F., Stahnke, L.H., Talon, R., Eds.; Blackwell Publishing: Ames, IA, USA, 2008; pp. 321–326. [Google Scholar]
- García-Díez, J.; Saraiva, C. Use of starter cultures in foods from animal origin to improve their safety. Int. J. Environ. Res. Public Health 2021, 18, 2544. [Google Scholar] [CrossRef]
- Rahman, M.S. pH in food preservation. In Handbook of Food Preservation, 2nd ed.; Rahman, S.M., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 287–298. [Google Scholar]
- Toldrá, F. The storage and preservation of meat III—Meat processing. In Lawrie’s Meat Science, 1st ed.; Toldrá, F., Ed.; Woodhead Publishing: Duxford, UK, 2017; pp. 265–296. [Google Scholar]
- Fraqueza, M.J.; Laranjo, M.; Alves, S.; Fernandes, M.H.; Agulheiro-Santos, A.C.; Fernandes, M.J.; Potes, M.E.; Elias, M. Dry-cured meat products according to the smoking regime: Process optimization to control polycyclic aromatic hydrocarbons. Foods 2020, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Racovita, R.C.; Secuianu, C.; Ciuca, M.D.; Israel-Roming, F. Effects of smoking temperature, smoking time and type of wood sawdust on polycyclic aromatic hydrocarbon accumulation levels in directly smoked pork sausages. J. Agric. Food Chem. 2020, 68, 9530–9536. [Google Scholar] [CrossRef]
- Hajmeer, M.N.; Tajkarimi, M.; Gomez, E.L.; Lim, N.; O’Hara, M.; Riemann, H.P.; Cliver, D.O. Thermal death of bacterial pathogens in linguiça smoking. Food Control 2011, 22, 668–672. [Google Scholar] [CrossRef]
- Van Hecke, T.; Ho, P.L.; Goethals, S.; De Smet, S. The potential of herbs and spices to reduce lipid oxidation during heating and gastrointestinal digestion of a beef product. Food Res. Int. 2017, 102, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Jalosinska, M.; Wilczak, J. Influence of plant extracts on the microbiological shelf life of meat products. Polish J. Food Nutr. Sci. 2009, 59, 303–308. [Google Scholar]
- Sun, Q.; Zhao, X.; Chen, H.; Zhang, C.; Kong, B. Impact of spice extracts on the formation of biogenic amines and the physicochemical, microbiological and sensory quality of dry sausage. Food Control 2018, 92, 190–200. [Google Scholar] [CrossRef]
- Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential oils as natural food antimicrobial agents: A review. Crit. Rev. Food Sci. Nut. 2015, 55, 1320–1323. [Google Scholar] [CrossRef]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flav. Frag. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agri. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- de Oliveira, T.L.C.; de Carvalho, S.M.; de Araújo Soares, R.; Andrade, M.A.; das Graças Cardoso, M.; Ramos, E.M.; Piccoli, R.H. Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT Food Sci. Technol. 2012, 45, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Green alternatives to nitrates and nitrites in meat-based products–a review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomović, V.; Šojić, B.; Savanović, J.; Kocić-Tanackov, S.; Pavlić, B.; Jokanović, M.; Đorđević, V.; Parunović, N.; Martinović, A.; Vujadinović, D. New formulation towards healthier meat products: Juniperus communis L. essential oil as alternative for sodium nitrite in dry fermented sausages. Foods 2020, 9, 1066. [Google Scholar] [CrossRef]
- Sucu, C.; Turp, G.Y. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Sci. 2018, 140, 158–166. [Google Scholar] [CrossRef]
- Mensi, A.; Udenigwe, C.C. Emerging and practical food innovations for achieving the Sustainable Development Goals (SDG) target 2.2. Trends Food Sci. Technol. 2021, 111, 783–789. [Google Scholar] [CrossRef]
- Teixeira, A.; Silva, S.; Guedes, C.; Rodrigues, S. Sheep and goat meat processed products quality: A review. Foods 2020, 9, 960. [Google Scholar] [CrossRef] [PubMed]
- Pintado, T.; Delgado-Pando, G. Towards more sustainable meat products: Extenders as a way of reducing meat content. Foods 2020, 9, 1044. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Díez, J.; Gonçalves, C.; Grispoldi, L.; Cenci-Goga, B.; Saraiva, C. Determining Food Stability to Achieve Food Security. Sustainability 2021, 13, 7222. https://doi.org/10.3390/su13137222
García-Díez J, Gonçalves C, Grispoldi L, Cenci-Goga B, Saraiva C. Determining Food Stability to Achieve Food Security. Sustainability. 2021; 13(13):7222. https://doi.org/10.3390/su13137222
Chicago/Turabian StyleGarcía-Díez, Juan, Carla Gonçalves, Luca Grispoldi, Beniamino Cenci-Goga, and Cristina Saraiva. 2021. "Determining Food Stability to Achieve Food Security" Sustainability 13, no. 13: 7222. https://doi.org/10.3390/su13137222