Influence of Particle Size on the Properties of Boards Made from Washingtonia Palm Rachis with Citric Acid
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martínez, G.C.; Pomares, A.L. La Palmera, elemento identitario en el paisaje de Huerta del Bajo Segura, España. Entorno Geográfico 2014, 10, 90–109. [Google Scholar]
- Roberts, N.C. Baja California Plant Field Guide; Natural History Publishing Company: San Diego, CA, USA, 1989. [Google Scholar]
- Downer, A.J.; Hodel, D.R.; Mochizuki, M.J. Pruning landscape palms. HortTechnology 2009, 19, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ortuño, T.; Ferrandez Garcia, M.T.; Andreu Rodriguez, J.; Ferrandez Garcia, C.E.; Ferrandez-Villena, M. Evaluating the Properties of Palm Particle Boards (Washingtonia Robusta H. Wendl). In Proceedings of the 6th Iberian Congress of Agroengineering, Evora, Portugal, 5–7 September 2011; Sociedad Española de Agroingeniería. pp. 126–130, ISBN 978-972-778-113-3. [Google Scholar]
- Lista Europea de Residuos [Decisión 2014/955/UE] con código LER 20 02 01. Diario Oficial de la Unión Europea L 370/46. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex%3A32014D0955 (accessed on 13 April 2020).
- Garcia-Ortuño, T.; Andreu-Rodriguez, J.; Ferrandez-Garcia, M.T.; Ferrandez-Garcia, C.E.; Medina, E.; Paredes, C.; Perez-Murcia, M.D.; Moreno-Caselles, J. Evaluation of the Different Uses of Washingtonia robusta Pruning Waste. Commun. Soil Sci. Plant Anal. 2013, 44, 623–631. [Google Scholar] [CrossRef]
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Andreu-Rodriguez, J.; Garcia-Ortuno, T.; Ferrandez-Garcia, M.T. Analysis of the Properties of Particleboard Palm (Washingtonia robusta) and Giant Reed (Arundo donax L.). In Proceedings of the 8th Iberian Congress of Agroengineering, Libro de Actas: Retos de la Nueva Agricultura Mediterránea, Orihuela, Spain, 1–3 June 2015; Universidad Miguel Hernández de Elche: Alicante, Spain, 2015; pp. 461–467, ISBN 978-84-16024-30-8. [Google Scholar]
- Ferrandez-Garcia, C.C.; Ferrandez-Garcia, C.E.; Ferrandez-Villena, M.; Ferrandez-Garcia, M.T.; Garcia-Ortuño, T. Acoustic and Thermal Evaluation of Palm Panels as Building Material. BioResources 2017, 12, 8047–8057. [Google Scholar]
- Ferrandez-Garcia, C.E.; Ferrandez-Garcia, A.; Ferrandez-Villena, M.; Hidalgo-Cordero, J.F.; Garcia-Ortuño, T.; Ferrandez-Garcia, M.T. Physical and mechanical properties of particleboard made from palm tree prunings. Forests 2018, 9, 755. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ortuño, T.; Ferrandez-Garcia, M.T.; Andreu-Rodriguez, J.; Ferrandez-Garcia, C.E.; Ferrandez-Villena, M. Valorization of Pruning Residues: The Use of Phoenix Canariensis to Elaborate Eco-Friendly Particleboards. In Proceedings of the Structures and Environmental Technologies. International Conference of Agricultural Engineering-CIGR-AgEng 2012, Valencia, Spain, 8–12 July 2012; Federación de Gremios de Editores de España: Madrid, Spain, 2012. ISBN 978-84-615-9928-8. [Google Scholar]
- Moral, R.; Bustamante, M.; Ferrandez-Garcia, C.E.; Andreu-Rodriguez, J.; Ferrandez-Garcia, M.T.; Garcia-Ortuño, T. New Biomass Sources to Reduce Peat Dependence in Mediterranean Substrates: Validation of Morus alba L., Sorghum vulgare L., and Phoenix canariensis Pruning Wastes. Commun. Soil Sci. Plant Anal. 2015, 46 (Suppl. 1), 10–19. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, C.E.; Ferrandez-Garcia, M.T.; Moral, R.; Ferrandez-Villena, M.; Andreu-Rodriguez, J.; Garcia-Ortuño, T. Development of Bioproducts from Palm Trees (Phoenix canariensis, Washingtonia robusta) Oriented to Carbon Sequestration. In Proceedings of the 8th Iberian Congress of Agroengineering, Libro de Actas: Retos de la Nueva Agricultura Mediterránea, Orihuela, Spain, 1–3 June 2015; Universidad Miguel Hernández de Elche: Alicante, Spain, 2015. ISBN 978-84-16024-30-8. [Google Scholar]
- El-Morsy, M.M.S. Studies on the rachises of the Egyptian date palm leaves for hardboard production. Fibre Sci. Technol. 1980, 13, 317–321. [Google Scholar] [CrossRef]
- Nemli, G.; Kalaycıoğlu, H.; Alp, T. Suitability of date (Phoenix dactyiferis) branches for particleboard production. Holz Als Roh Werkst. 2001, 59, 411–412. [Google Scholar] [CrossRef]
- Ashori, A.; Nourbakhsh, A. Effect of press cycle time and resin content on physical and mechanical properties of particleboard panels made from the underutilized low-quality raw materials. Ind. Crops Prod. 2008, 28, 225–230. [Google Scholar] [CrossRef]
- Iskanderani, F.I. Physical properties of particleboard panels manufactured from Phoenix dactylifera-L (date palm) mid-rib chips using urea formaldehyde binder. Int. J. Polym. Mater. 2008, 57, 979–995. [Google Scholar] [CrossRef]
- Hegazy, S.; Aref, I. Suitability of some fast growing trees and date palm fronds for particleboard production. For. Prod. J. 2010, 60, 599–604. [Google Scholar] [CrossRef]
- Agoudjil, B.; Benchabane, A.; Boudenne, A.; Ibos, L.; Fois, M. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Build. 2011, 43, 491–497. [Google Scholar] [CrossRef]
- Amirou, S.; Zerizer, A.; Pizzi, A.; Haddadou, I.; Zhou, X. Particleboards production from date palm biomass. Eur. J. Wood Wood Prod. 2013, 71, 717–723. [Google Scholar] [CrossRef]
- Hegazy, S.; Ahmed, K.; Hiziroglu, S. Oriented strand board production from water-treated date palm fronds. BioResources 2015, 10, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, S.; Ahmed, K. Effect of date palm cultivar, particle size, panel density and hot water extraction on particleboards manufactured from date palm fronds. Agriculture 2015, 5, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Rasat, M.S.M.; Wahab, R.; Sulaiman, O.; Moktar, J.; Mohamed, A.; Tabet, T.A.; Khalid, I. Properties of composite boards from oil palm frond agricultural waste. BioResources 2011, 6, 4389–4403. [Google Scholar]
- Hashim, R.; Nadhari, W.N.A.W.; Sulaiman, O.; Kawamura, F.; Hiziroglu, S.; Sato, M.; Sugimoto, T.; Seng, T.G.; Tanaka, R. Characterization of raw materials and manufactured binderless particleboard from oil palm biomass. Mater. Des. 2011, 32, 246–254. [Google Scholar] [CrossRef]
- Sulaiman, O.; Salim, N.; Nordin, N.A.; Hashim, R.; Ibrahim, M.; Sato, M. The potential of oil palm trunk biomass as an alternative source for compressed wood. BioResources 2012, 7, 2688–2706. [Google Scholar] [CrossRef]
- Or, K.H.; Putra, A.; Selamat, M.Z. Oil Palm Empty Fruit Bunch Fibers as Sustainable Acoustic Material. In Proceedings of the Mechanical Engineering Research Day 2015 (MERD’15), Melaka, Malaysia, 31 March 2015; pp. 99–100. [Google Scholar]
- Kerdtongmee, P.; Saleh, A.; Eadkhong, T.; Danworaphong, S. Investigating Sound Absorption of Oil Palm Trunk Panels Using One-microphone Impedance Tube. BioResources 2016, 11, 8409–8418. [Google Scholar] [CrossRef] [Green Version]
- Kalaivani, R.; Ewe, L.S.; Chua, Y.L.; Ibrahim, Z. The Effects of Different Thickness of Oil Palm Trunk (Opt) Fiberboard on Acoustic Properties. Sci. Int. 2017, 29, 1105–1108. [Google Scholar]
- Rosnah, M.S.; Wan, H.; Top, A.M.; Kamarudin, H. Thermal properties of oil palm fibre, cellulose and its derivatives. J. Oil Palm Res. 2006, 18, 272–277. [Google Scholar]
- Suradi, S.S.; Yunus, R.M.; Beg, M.D.H.; Rivai, M.; Yusof, Z.A.M. Oil palm bio-fiber reinforced thermoplastic composites-effects of matrix modification on mechanical and thermal properties. J. Appl. Sci. 2010, 10, 3271–3276. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.N.M.; Zakaria, N.; Sipaut, C.S.; Sulaiman, O.; Hashim, R. Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr. Polym. 2011, 86, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Kriker, A.; Bali, B.; Debicki, G.; Bouziane, M.; Chabannet, M. Durability of date palm fibers and their use as reinforcement in hot dry climates. Cem. Concr. Compos. 2008, 30, 639–648. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, A.; Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, M.T. Potential Use of Phoenix canariensis Biomass in Binderless Particleboards at Low Temperature and Pressure. BioResources 2017, 12, 6698–6712. [Google Scholar] [CrossRef] [Green Version]
- Braiek, A.; Karkri, M.; Adili, A.; Ibos, L.; Nasrallah, S.B. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Nasser, R.A.; Al-Mefarrej, H.A. Midribs of date palm as a raw material for wood-cement composite industry in Saudi Arabia. World Appl. Sci. J. 2011, 15, 1651–1658. [Google Scholar]
- Boumhaout, M.; Boukhattem, L.; Hamdi, H.; Benhamou, B.; Nouh, F.A. Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 2017, 135, 241–250. [Google Scholar] [CrossRef]
- Al-Juruf, R.S.; Ahmed, F.A.; Alam, I.A. Development of heat insulating materials using date palm leaves. Therm. Insul. 1988, 11, 158–164. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A. Date palm fiber reinforced composite as a new insulating material. Int. J. Energy Res. 2003, 27, 1293–1297. [Google Scholar] [CrossRef]
- Al-Khanbashi, A.; Al-Kaabi, K.; Hammami, A. Date palm fibers as polymeric matrix reinforcement: Fiber characterization. Polym. Compos. 2005, 26, 486–497. [Google Scholar] [CrossRef]
- Bourmaud, A.; Dhakal, H.; Habrant, A.; Padovani, J.; Siniscalco, D.; Ramage, M.H.; Shah, D.U. Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Compos. Part A Appl. 2017, 103, 292–303. [Google Scholar] [CrossRef] [Green Version]
- El Mansouri, N.E.; Salvadó, J. Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind. Crops Prod. 2006, 24, 8–16. [Google Scholar] [CrossRef]
- Guimarães Carvalho, A.; Costa Lelis, R.C.; do Nascimento, A.M. Avaliação de adesivos à base de taninos de Pinus caribaea var. bahamensis e de Acacia mearnsii na fabricação de painéis aglomerados. Cienc. Florest. 2014, 24, 479–489. [Google Scholar]
- Ferrandez-Garcia, C.E.; Andreu-Rodriguez, J.; Ferrandez-Garcia, M.T.; Ferrandez-Villena, M.; Garcia-Ortuño, T. Panels made from giant reed bonded with non-modified starches. BioResources 2012, 7, 5904–5916. [Google Scholar] [CrossRef] [Green Version]
- Liao, R.; Xu, J.; Umemura, K. Low density sugarcane bagasse particleboard bonded with citric acid and sucrose: Effect of board density and additive content. BioResources 2016, 11, 2174–2185. [Google Scholar] [CrossRef]
- Umemura, K.; Sugihara, O.; Kawai, S. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard. J. Wood Sci. 2013, 59, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Villena, M. Experimental Evaluation of a New Giant Reed (Arundo donax L.) Composite Using Citric Acid as a Natural Binder. Agronomy 2019, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Kusumah, S.S.; Umemura, K.; Yoshioka, K.; Miyafuji, H.; Kanayama, K. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard I: Effects of pre-drying treatment and citric acid content on the board properties. Ind. Crops Prod. 2016, 84, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Widyorini, R.; Umemura, K.; Isnan, R.; Putra, D.R.; Awaludin, A.; Prayitno, T.A. Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. Eur. J. Wood Wood Prod. 2016, 74, 57–65. [Google Scholar] [CrossRef]
- EN 326. Wood-Based Panels. Sampling, Cutting and Inspection. Part 1: Sampling and Cutting of Test Pieces and Expression of Test; European Committee for Standardization: Brussels, Belgium, 1994. [Google Scholar]
- EN 309. Particleboards. Definitions and Classification; European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- EN 312. Particleboards. Specifications; European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- EN 323. Wood-Based Panels. Determination of Density; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- EN 317. Particleboards and Fiberboards. Determination of Swelling in Thickness after Immersion in Water; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- EN 310. Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- EN 319. Particleboards and Fiberboards. Determination of Tensile Strength Perpendicular to the Plane of de Board; European Committee for Standardization: Brussels, Belgium, 1993. [Google Scholar]
- EN 12667. Thermal Performance of Building Materials and Products: Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods: Products of High and Medium Thermal Resistance; European Committee for Standardization: Brussels, Belgium, 2001. [Google Scholar]
- Guler, C.; Ozen, R. Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz Als Roh-Und Werkst. 2004, 62, 40–43. [Google Scholar] [CrossRef]
- Bektas, I.; Guler, C.; Kalaycıoğlu, H. Manufacturing of particleboard from sunflower stalks (Helianthus annuus L.) using urea–formaldehyde resin. J. Sci. Eng. 2002, 5, 49–56. [Google Scholar]
- Alma, M.H.; Kalaycıoğlu, H.; Bektaş, I.; Tutus, A. Properties of cotton carpel-based particleboards. Ind. Crops Prod. 2005, 22, 141–149. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Z.; Zhang, R.; Jenkins, B.M.; Blunk, S. Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresour. Technol. 2007, 98, 1304–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntalos, G.A.; Grigoriou, A.H. Characterization and utilisation of vine prunings as a wood substitute for particleboard production. Ind. Crops Prod. 2002, 16, 59–68. [Google Scholar] [CrossRef]
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Garcia, M.T. The Influence of Processing and Particle Size on Binderless Particleboards Made from Arundo donax L. Rhizome. Polymers 2020, 12, 696. [Google Scholar] [CrossRef] [Green Version]
- Pintiaux, T.; Viet, D.; Vandenbossche, V.; Rigal, L.; Rouilly, A. Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers: A comprehensive review. BioResources 2015, 10, 1915–1963. [Google Scholar]
- Kymalainen, H.R.; Sjoberg, A.M. Flax and Hemp Fibres as Raw Materials for Thermal Insulations; University of Helsinki-Department of Agrotechnology: Helsinki, Finland, 2008; pp. 1261–1269. [Google Scholar]
- Zhou, X.Y.; Zheng, F.; Li, H.G.; Lu, C.L. An environment-friendly thermal insulation material from cotton stalk fibers. Energy Build. 2010, 42, 1070–1074. [Google Scholar] [CrossRef]
- Xu, J.; Sugawara, R.; Widyorini, R.; Han, G.; Kawai, S. Manufacture and properties of low-density binderless particleboard from kenaf core. J. Wood Sci. 2004, 50, 62–67. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, C.C.; Garcia-Ortuño, T.; Ferrandez-Garcia, M.T.; Ferrandez-Villena, M.; Ferrandez-Garcia, C.E. Fire-resistance, Physical, and Mechanical Characterization of Binderless Rice Straw Particleboards. BioResources 2017, 12, 8539–8549. [Google Scholar]
- EN 13986 + A1. Wood-Based Panels for Use in Construction. Characteristics, Evaluation of Conformity and Marking; European Committee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
Type | Particle Size (mm) | Quantity g/100 g of Particles | Temperature (°C) | Pressure (MPa) | Time (min) | Number of Boards | |
---|---|---|---|---|---|---|---|
Citric Acid | Water | ||||||
1 | <0.25 | 10 | 10 | 150 | 2.6 | 7 | 4 |
2 | 0.25 to 1 | 4 | |||||
3 | 1 to 2 | 4 | |||||
4 | 2 to 4 | 4 | |||||
5 | 4 to 8 | 4 |
Type of Board | Density (kg/m3) | TS 2 h (%) | TS 24 h (%) | WA 2 h (%) | WA 24 h (%) |
---|---|---|---|---|---|
1 | 812.20 (23.10) | 16.40 (1.00) | 19.60 (0.70) | 56.10 (4.00) | 72.20 (6.60) |
2 | 779.40 (50.50) | 22.10 (4.80) | 31.40 (8.90) | 58.90 (12.10) | 79.40 (12.90) |
3 | 801.30 (15.70) | 34.40 (3.30) | 51.00 (9.60) | 87.90 (8.80) | 94.30 (13.40) |
4 | 777.70 (35.50) | 38.10 (4.50) | 52.60 (4.80) | 91.40 (6.10) | 99.30 (9.50) |
5 | 687.10 (48.10) | 48.60 (9.30) | 94.10 (5.00) | 99.30 (26.50) | 127.50 (9.50) |
Factor | Properties | Sum of Squares | d.f. | Half Quadratic | F | Sig. |
---|---|---|---|---|---|---|
Particle size | Density (kg/m3) | 36,307.134 | 4 | 9076.784 | 6.233 | 0.004 |
TS 2 h (%) | 2290.956 | 4 | 572.739 | 27.009 | 0.000 | |
TS 24 h (%) | 10,878.540 | 4 | 2719.635 | 27.433 | 0.000 | |
WA 2 h (%) | 6227.561 | 4 | 1556.890 | 10.635 | 0.001 | |
WA 24 h (%) | 10,307.592 | 4 | 2576.898 | 25.264 | 0.000 | |
MOR (N/mm2) | 329.155 | 4 | 82.289 | 98.983 | 0.000 | |
MOE (N/mm2) | 14,180,000.000 | 4 | 3,545,000.000 | 59.048 | 0.000 | |
IB (N/mm2) | 0.600 | 4 | 0.150 | 6.945 | 0.002 | |
Thermal C. (W/m·K) | 0.001 | 4 | 0.000 | 14.192 | 0.000 |
Name | TS 24 h (%) | WA 24 h (%) | Source |
---|---|---|---|
Date palm | 32.0 | 61.3 | [9] |
Canary Islands palm | 38.2 | 71.2 | [9] |
Oil palm | 20.0 | 70.5 | [23] |
Tobacco straw | 22.0 | - | [55] |
Cotton stalks | 24.0 | 93.6 | [56] |
Sunflower stalk | 25.0 | 95.0 | [57] |
Cotton carpel | 26.0 | 153 | [58] |
Wheatgrass | 41.7 | - | [59] |
Vine prunings | 25.8 | 65.6 | [60] |
Washingtonia palm | 38.3 | 72.7 | [9] |
19.6 | 72.2 | This work (type 1) |
Type of Board | MOR (N/mm2) | MOE (N/mm2) | IB (N/mm2) | Thermal Conductivity (W/m·K) |
---|---|---|---|---|
1 | 12.5 (0.4) | 2640 (276) | 0.60 (0.06) | 0.089 (0.003) |
2 | 12.01 (1.4) | 1860 (385) | 0.30 (0.24) | 0.086 (0.004) |
3 | 7.36 (0.8) | 1240 (150) | 0.14 (0.08) | 0.082 (0.003) |
4 | 3.71 (1.0) | 675 (72) | 0.15 (0.06) | 0.080 (0.003) |
5 | 2.77 (0.30) | 445 (54) | 0.14 (0.09) | 0.079 (0.001) |
Type of Board | MOR (N/mm2) | MOE (N/mm2) | IB (N/mm2) | TS 24 h (%) |
---|---|---|---|---|
1 | 12.5 | 2640 | 0.60 | 19.6 |
2 | 12.1 | 1860 | 0.30 | 31.4 |
Grade P1 | 10.5 | - | 0.28 | - |
Grade P2 | 11.0 | 1800 | 0.40 | - |
Grade P3 | 15.0 | 2050 | 0.45 | 17.0 |
Name | Density (kg/m3) | Thermal Conductivity λ (W/m K) | Source |
---|---|---|---|
Hemp | 5–100 | 0.040 to 0.094 | [63] |
Flax | 5–100 | 0.038 to 0.075 | [63] |
Cotton | 150–300 | 0.059 to 0.074 | [64] |
Kenaf | 150–250 | 0.051 to 0.058 | [65] |
Sugarcane bagasse | 350–500 | 0.079 to 0.098 | [43] |
Rice Straw | 980–1148 | 0.076 to 0.091 | [66] |
300 | 0.070 | [67] | |
Wood particleboards | 600 | 0.120 | [67] |
900 | 0.180 | [67] | |
Washingtonia palm rachis | 687.10–812.20 | 0.079 to 0.089 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrandez-Garcia, M.T.; Ferrandez-Garcia, A.; Garcia-Ortuño, T.; Ferrandez-Garcia, C.E.; Ferrandez-Villena, M. Influence of Particle Size on the Properties of Boards Made from Washingtonia Palm Rachis with Citric Acid. Sustainability 2020, 12, 4841. https://doi.org/10.3390/su12124841
Ferrandez-Garcia MT, Ferrandez-Garcia A, Garcia-Ortuño T, Ferrandez-Garcia CE, Ferrandez-Villena M. Influence of Particle Size on the Properties of Boards Made from Washingtonia Palm Rachis with Citric Acid. Sustainability. 2020; 12(12):4841. https://doi.org/10.3390/su12124841
Chicago/Turabian StyleFerrandez-Garcia, Maria Teresa, Antonio Ferrandez-Garcia, Teresa Garcia-Ortuño, Clara Eugenia Ferrandez-Garcia, and Manuel Ferrandez-Villena. 2020. "Influence of Particle Size on the Properties of Boards Made from Washingtonia Palm Rachis with Citric Acid" Sustainability 12, no. 12: 4841. https://doi.org/10.3390/su12124841