Does an Emissions Trading Policy Improve Environmental Efficiency? Evidence from China
Abstract
:1. Introduction
2. Methodology and Data
2.1. Environmental Efficiency Evaluation
2.1.1. Environmental Governance Efficiency
2.1.2. Environmental Economic Efficiency
2.2. Emissions Trading System Effect Estimation: A DID Model
2.3. Data
- Direct capital investment in environmental treatments, including the amount of investment in wastewater treatment and the amount of investment in air pollution treatment.
- Labor input. We selected the number of full-time employers that engage in environmental protection activities to measure a region’s human resources in environmental governance.
- Technical inputs, including the number of operating systems for wastewater and air pollution.
- Treated outputs, referring to the amount of wastewater and air pollution discharged up to the standard, and the amount of industrial wastewater and industrial air pollution discharged.
- Capital investment, the net value of industrial fixed assets above the designated size.
- Labor input, the number of employers in industrial enterprises above the designated size.
- Resources and energy inputs. The use of environmental and energy resources are important to input through the production process of enterprises, and they are also the main source of pollutant emissions.
3. Results
3.1. Comparative Analysis of Regional Environmental Treatment Efficiency
3.2. Propensity Score Matching
3.3. Empirical Results of DID
3.4. Results in Subsample and Robustness Test
4. Conclusions and Policy Implementation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | H0: Contain Unit Roots | |
---|---|---|
EW | −2.56 *** | Reject |
EEW | −2.49 *** | Reject |
EG | −5.20 *** | Reject |
EEG | −2.12 ** | Reject |
eaw | −2.49 *** | Reject |
plf | −3.74 *** | Reject |
ind | −3.86 *** | Reject |
sto | −8.81 *** | Reject |
hi | −4.81 *** | Reject |
gdpp | 1.69 * | Reject |
urb | −1.6 * | Reject |
References
- Lu, Z.N.; Chen, H.; Hao, Y.; Wang, J.; Song, X.; Mok, T.M. The dynamic relationship between environmental pollution, economic development and public health: Evidence from China. J. Clean. Prod. 2017, 10, 134–147. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Z.; Fan, Y. The impact of environmental regulation on the coordinated development of environment and economy in China. Nat. Hazards 2018, 91, 473–489. [Google Scholar] [CrossRef]
- Li, D.; Wu, N.; Tang, S.; Su, G.; Li, X.; Zhang, Y.; Wang, G.; Zhang, J.; Liu, H.; Hecker, M.; et al. Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ. Sci. Eur. 2018, 30, 27. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, K.; Wu, J. Environmental hazard in Shanghai, China: Lessons learned from Huangpu River dead pigs incident. Nat. Hazards 2017, 88, 1269–1272. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Chen, J.; Huisingh, D. Preventing smog crises in China and globally. J. Clean. Prod. 2016, 112, 1261–1271. [Google Scholar] [CrossRef]
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W.; et al. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Acquaye, A.; Feng, K.; Oppon, E.; Salhi, S.; Ibn-Mohammed, T.; Genovese, A.; Hubacek, K. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. J. Environ. Manag. 2017, 187, 571–585. [Google Scholar] [CrossRef]
- Bergstrom, J.C.; Randall, A. Resource Economics: An. Economic Approach to Natural-Resource and Environmental Policy; Edward Elgar Publishing: Cheltenham, UK, 2016. [Google Scholar]
- Marten, G.G. Human Ecology: Basic Concepts for Sustainable Development; Routledge: Abingdon, UK, 2010. [Google Scholar]
- Schubert, U.; Zerlauth, A. Innovative regional environmental policy–The RECLAIM-emission trading policy. Environ. Manag. Health 1999, 10, 130–143. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Liu, B.; Bi, J. Policy interactions and underperforming emission trading markets in China. Environ. Sci. Technol. 2013, 47, 7077–7084. [Google Scholar] [CrossRef]
- Song, Y.; Liang, D.; Liu, T.; Song, X. How China’s current carbon trading policy affects carbon price? An investigation of the Shanghai Emission Trading Scheme pilot. J. Clean. Prod. 2018, 181, 374–384. [Google Scholar] [CrossRef]
- Anthoff, D.; Hahn, R. Government failure and market failure: On the inefficiency of environmental and energy policy. Oxf. Rev. Econ. Policy 2010, 26, 197–224. [Google Scholar] [CrossRef]
- Helm, D. Government failure, rent-seeking, and capture: The design of climate change policy. Oxf. Rev. Econ. Policy 2010, 26, 182–196. [Google Scholar] [CrossRef]
- Kemp, R. Environmental Policy and Technical Change; Edward Elgar Publishing: Cheltenham, UK, 1997. [Google Scholar]
- Li, Y.; Shen, K. The effect of China’s pollution control policy on emission reduction—An empirical analysis based on inter-provincial industrial pollution data. Manag. World 2008, 7, 7–17. [Google Scholar]
- Jin, X.; Shen, Z. The cap-and-trade model of incremental construction land quota: An analog with the emission permits system. China Popul. Resour. Environ. 2010, 20, 86–91. [Google Scholar]
- Yan, W.; Guo, S. Will China’s Sulphur Dioxide Emissions Fair reduce the intensity of pollution emissions? Shanghai Econ. Res. 2012, 6, 76–83. [Google Scholar]
- Paavola, J. Institutions and environmental governance: A reconceptualization. Ecol. Econ. 2007, 63, 93–103. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, L.; Zhou, D.Q.; Xia, W.J. Modeling economic performance of interprovincial CO2 emission reduction quota trading in China. Appl. Energy 2013, 112, 1518–1528. [Google Scholar] [CrossRef]
- Brännlund, R.; Chung, Y.; Färe, R.; Grosskopf, S. Emissions trading and profitability: The Swedish pulp and paper industry. Environ. Resour. Econ. 1998, 12, 345–356. [Google Scholar] [CrossRef]
- Fare, M.; Ahmed, P.O. Complementary Currency Systems Questioning Social and Economic Changes. 2014. Available online: https://base.socioeco.org/docs/fare-poa-2014.pdf (accessed on 3 September 2019).
- Shiyi, C. Energy-Save and Emission-Abate Activity with its Impact on Industrial Win-Win Development in China: 2009–2049. Econ. Res. J. 2010, 3, 129–143. [Google Scholar]
- Vranes, E. Trade and the Environment: Fundamental Issues in International Law, WTO Law, and Legal Theory; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Wit, R.C.; Boon, B.H.; Van Velzen, A.; Cames, M.; Deuber, O.; Lee, D.S. Giving Wings to Emission Trading; Inclusion of Aviation under the European Emission Trading System (ETS); CE Delft: Delf, The Netherlands, 2005. [Google Scholar]
- Worrell, E.; Price, L. Policy scenarios for energy efficiency improvement in industry. Energy Policy 2001, 29, 1223–1241. [Google Scholar] [CrossRef]
- Schmalensee, R.; Joskow, P.L.; Ellerman, A.D.; Montero, J.P.; Bailey, E.M. An interim evaluation of sulfur dioxide emissions trading. J. Econ. Perspect. 1998, 12, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Schreifels, J.J.; Fu, Y.; Wilson, E.J. Sulfur dioxide control in China: Policy evolution during the 10th and 11th Five-year Plans and lessons for the future. Energy Policy 2012, 48, 779–789. [Google Scholar] [CrossRef]
- Babiker, M.; Reilly, J.; Viguier, L. Is international emissions trading always beneficial? Energy J. 2004, 25, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Dai, H.; Ren, S.; Zhao, D.; Masui, T. Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China. Energy 2015, 79, 212–227. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Park, H.; Jeong, J.; Lee, J. Evaluating economic and environmental efficiency of global airlines: A SBM-DEA approach. Transp. Res. Part. D Transp. Environ. 2014, 27, 46–50. [Google Scholar] [CrossRef]
- Mazzanti, M.; Zoboli, R. Environmental efficiency and labour productivity: Trade-off or joint dynamics? A theoretical investigation and empirical evidence from Italy using NAMEA. Ecol. Econ. 2009, 68, 1182–1194. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Gielen, D.; Changhong, C. The CO2 emission reduction benefits of Chinese energy policies and environmental policies: A case study for Shanghai, period 1995–2020. Ecol. Econ. 2001, 39, 257–270. [Google Scholar] [CrossRef]
- Park, C.-W.; Kwon, K.-S.; Kim, W.-B.; Min, B.-K.; Park, S.-J.; Sung, I.-H.; Yoon, Y.S.; Lee, K.-S.; Lee, J.-H.; Seok, J. Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. Int. J. Precis. Eng. Manuf. 2009, 10, 151–173. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G. Exploring the existence of Kuznets curve in countries’ environmental efficiency using DEA window analysis. Ecol. Econ. 2009, 68, 2168–2176. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.-L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Barnum, D.; Gleason, J. Technical efficiency bias caused by intra-input aggregation in data envelopment analysis. Appl. Econ. Lett. 2005, 12, 785–788. [Google Scholar] [CrossRef]
- Banker, R.D. Maximum likelihood, consistency and data envelopment analysis: A statistical foundation. Manag. Sci. 1993, 39, 1265–1273. [Google Scholar] [CrossRef]
- Bajec, P.; Tuljak-Suban, D. An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria. Sustainability 2019, 11, 2330. [Google Scholar] [CrossRef] [Green Version]
- Brady, M. Indigenous Australia and alcohol policy: Meeting difference with indifference. Aust. J. Soc. Issues 2004, 39, 477. [Google Scholar] [CrossRef]
- Stuart, E.A.; Huskamp, H.A.; Duckworth, K.; Simmons, J.; Song, Z.; Chernew, M.E.; Barry, C.L. Using propensity scores in difference-in-differences models to estimate the effects of a policy change. Health Serv. Outcomes Res. Methodol. 2014, 14, 166–182. [Google Scholar] [CrossRef]
- Wing, C.; Simon, K.; Bello-Gomez, R.A. Designing difference in difference studies: Best practices for public health policy research. Annu. Rev. Public Health 2018, 39, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Adan, H.; Fuerst, F. Do energy efficiency measures really reduce household energy consumption? A difference-in-difference analysis. Energy Effic. 2016, 9, 1207–1219. [Google Scholar] [CrossRef] [Green Version]
- Miteva, D.A.; Murray, B.C.; Pattanayak, S.K. Do protected areas reduce blue carbon emissions? A quasi-experimental evaluation of mangroves in Indonesia. Ecol. Econ. 2015, 119, 127–135. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Peng, Y.-L.; Ma, C.-Q.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 2017, 100, 18–28. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Robaina, M. The economic and environmental efficiency assessment in EU cross-country: Evidence from DEA and quantile regression approach. Ecol. Indic. 2017, 78, 85–97. [Google Scholar] [CrossRef]
- Memon, A.G.; Harijan, K.; Uqaili, M.A.; Memon, R.A. Thermo-environmental and economic analysis of simple and regenerative gas turbine cycles with regression modeling and optimization. Energy Convers. Manag. 2013, 76, 852–864. [Google Scholar] [CrossRef]
- Fuglie, K.O.; Bosch, D.J. Economic and environmental implications of soil nitrogen testing: A switching-regression analysis. Am. J. Agric. Econ. 1995, 77, 891–900. [Google Scholar] [CrossRef]
- Gadenne, D.L.; Kennedy, J.; McKeiver, C. An empirical study of environmental awareness and practices in SMEs. J. Bus. Ethics 2009, 84, 45–63. [Google Scholar] [CrossRef]
- Zhicheng, C.; Porter, R. Energy management and environmental awareness in China’s enterprises. Energy Policy 2000, 28, 49–63. [Google Scholar] [CrossRef]
- Liu, S.; Persson, K.M. Situations of water reuse in China. Water Policy 2013, 15, 705–727. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Zuo, J.; Mu, R.; Zhou, L.; Sun, M. Dynamics of Sewage Charge Policies, Environmental Protection Industry and Polluting Enterprises—A Case Study in China. Sustainability 2014, 6, 4858–4876. [Google Scholar] [CrossRef] [Green Version]
- Halkos, G.E.; Tzeremes, N.G. Economic growth and environmental efficiency: Evidence from US regions. Econ. Lett. 2013, 120, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Chen, D.; Zhu, B.; Hu, S. Eco-efficiency trends in China, 1978–2010: Decoupling environmental pressure from economic growth. Ecol. Indic. 2013, 24, 177–184. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Grimmond, S.U.E. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y. Urbanization, economic development and environmental change. Sustainability 2014, 6, 5143–5161. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Kwan, M.-P.; Yang, H.; Chuai, X. The effect of urbanization on carbon dioxide emissions efficiency in the Yangtze River Delta, China. J. Clean. Prod. 2018, 188, 38–48. [Google Scholar] [CrossRef]
- Haberl, H.; Krausmann, F. Changes in Population, Affluence, and Environmental Pressures During Industrialization: The Case of Austria 1830–1995. Popul. Environ. 2001, 23, 49–70. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Xie, B.-C.; Duan, N.; Wang, Y.-S. Environmental efficiency and abatement cost of China’s industrial sectors based on a three-stage data envelopment analysis. J. Clean. Prod. 2017, 153, 626–636. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Villegas-Palacio, C.; Coria, J. On the interaction between imperfect compliance and technology adoption: Taxes versus tradable emissions permits. J. Regul. Econ. 2010, 38, 274–291. [Google Scholar] [CrossRef]
- Jaspers, F.G.W. Institutional arrangements for integrated river basin management. Water Policy 2003, 5, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Ye, W.; Zhang, B. Introducing nonpoint source transferable quotas in nitrogen trading: The effects of transaction costs and uncertainty. J. Environ. Manag. 2016, 168, 252–259. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | Mean | Standard Deviation | Min | Max. |
---|---|---|---|---|---|
eaw | Self-raised funds by enterprises (10 thousand Yuan) | 11.61 | 0.86 | 8.39 | 14.19 |
plf | Degree of regional environmental supervision (sewage charges) | 10.55 | 0.86 | 7.65 | 13.03 |
ind | The ratio of the output value of industrial enterprises above designated size to the GDP | 0.43 | 0.07 | 0.19 | 0.57 |
sto | The proportion of industrial output value of the state-owned and state-holding enterprises above designated size over the total industrial output value | 0.47 | 0.22 | 0.11 | 0.82 |
hi | The proportion of the output value of heavy industrial enterprises to the total output value of industrial enterprises | 0.75 | 0.12 | 0.44 | 0.95 |
gdpp | Per capita GDP (10 thousand Yuan) | 9.88 | 0.68 | 8.19 | 11.35 |
urb | The urbanization rate(urban population/total population) | 0.46 | 0.16 | 0.86 | 0.23 |
exeast | Tegional dummy variable for eastern region with 0 and 1 for otherwise | 0.65 | 0.48 | 0 | 1 |
Before | After | |||||||
---|---|---|---|---|---|---|---|---|
EW | EG | EEW | EEG | EW | EG | EEW | EEG | |
Pilot | ||||||||
Hebei | 0.47 | 0.49 | 0.43 | 0.42 | 0.79 | 0.84 | 0.65 | 0.65 |
Henan | 0.39 | 0.48 | 0.37 | 0.38 | 0.65 | 0.5 | 0.48 | 0.52 |
Hubei | 0.41 | 0.47 | 0.25 | 0.29 | 0.64 | 0.53 | 0.45 | 0.56 |
Hunan | 0.53 | 0.3 | 0.29 | 0.33 | 0.61 | 0.52 | 0.47 | 0.62 |
Jiangsu | 0.69 | 0.59 | 0.42 | 0.38 | 0.74 | 0.62 | 0.75 | 0.71 |
Inner Mongolia | 0.21 | 0.91 | 0.29 | 0.26 | 0.35 | 0.83 | 0.56 | 0.52 |
Shanxi | 0.16 | 0.85 | 0.27 | 0.23 | 0.27 | 0.73 | 0.45 | 0.49 |
Shaanxi | 0.25 | 0.39 | 0.28 | 0.26 | 0.4 | 0.73 | 0.46 | 0.52 |
Tianjin | 0.19 | 0.5 | 0.32 | 0.3 | 0.19 | 0.35 | 0.34 | 0.34 |
Zhejiang | 0.58 | 0.59 | 0.65 | 0.85 | 0.81 | 0.8 | 0.61 | 0.87 |
Chongqing | 0.49 | 0.51 | 0.31 | 0.32 | 0.84 | 0.72 | 0.46 | 0.8 |
None-Pilot | ||||||||
Anhui | 0.45 | 0.63 | 0.3 | 0.34 | 0.77 | 0.71 | 0.4 | 0.46 |
Beijing | 0.21 | 0.28 | 0.72 | 0.7 | 0.44 | 0.39 | 0.84 | 0.78 |
Fujian | 0.69 | 0.36 | 0.41 | 0.53 | 0.77 | 0.4 | 0.48 | 0.54 |
Gansu | 0.17 | 0.4 | 0.25 | 0.23 | 0.17 | 0.39 | 0.32 | 0.32 |
Guangdong | 0.38 | 0.36 | 0.45 | 0.42 | 0.61 | 0.42 | 0.76 | 0.72 |
Guangxi | 0.73 | 0.77 | 0.26 | 0.28 | 1 | 0.64 | 0.34 | 0.38 |
Guizhou | 0.11 | 0.59 | 0.24 | 0.22 | 0.17 | 0.59 | 0.27 | 0.25 |
Hainan | 0.44 | 0.64 | 0.33 | 0.33 | 0.37 | 0.79 | 0.44 | 0.48 |
Heilongjiang | 0.34 | 0.41 | 0.28 | 0.33 | 0.34 | 0.34 | 0.31 | 0.36 |
Jilin | 0.34 | 0.55 | 0.34 | 0.37 | 0.45 | 0.36 | 0.45 | 0.51 |
Jiangxi | 0.61 | 0.44 | 0.3 | 0.31 | 0.81 | 0.57 | 0.43 | 0.47 |
Liaoning | 0.42 | 0.68 | 0.42 | 0.42 | 0.41 | 0.61 | 0.55 | 0.57 |
Ningxia | 0.26 | 0.54 | 0.25 | 0.21 | 0.49 | 0.68 | 0.29 | 0.26 |
Shandong | 0.32 | 0.59 | 0.37 | 0.7 | 0.53 | 0.55 | 0.7 | 0.96 |
Shanghai | 0.59 | 0.83 | 0.46 | 0.42 | 0.75 | 0.46 | 0.79 | 0.74 |
Sichuan | 0.37 | 0.37 | 0.27 | 0.31 | 0.45 | 0.51 | 0.38 | 0.43 |
Tianjin | 0.27 | 0.41 | 0.4 | 0.37 | 0.37 | 0.48 | 0.71 | 0.68 |
Yunnan | 0.26 | 0.43 | 0.32 | 0.31 | 0.32 | 0.41 | 0.33 | 0.34 |
Variable | Sample | Treated | Controls | Difference | S.E. | t-Value |
---|---|---|---|---|---|---|
EW | Unmatched | 0.4 | 0.41 | −0.003 | 0.041 | −0.08 |
ATT | 0.4 | 0.38 | 0.023 | 0.041 | 0.56 | |
EEW | Unmatched | 0.4 | 0.41 | −0.003 | 0.041 | −0.08 |
ATT | 0.4 | 0.38 | 0.023 | 0.041 | 0.56 | |
EG | Unmatched | 0.54 | 0.53 | 0.004 | 0.039 | 0.11 |
ATT | 0.54 | 0.26 | 0.177 | 0.565 | 0.31 | |
EEG | Unmatched | 0.37 | 0.39 | −0.021 | 0.033 | −0.63 |
ATT | 0.37 | 0.38 | −0.015 | 0.036 | −0.43 |
Variables | Mean | t-Test | ||
---|---|---|---|---|
Treated | Control | t-value | P > |t| | |
eaw | 11.58 | 11.73 | −0.79 | 0.43 |
plf | 10.57 | 10.6 | −0.18 | 0.86 |
ind | 0.45 | 0.46 | −0.78 | 0.44 |
sto | 0.48 | 0.43 | 0.97 | 0.97 |
hi | 0.7 | 0.68 | 0.98 | 0.33 |
gdpp | 9.53 | 9.68 | −1.53 | 0.13 |
urb | 0.49 | 0.43 | −0.46 | 0.54 |
Variable | EW | EEW | EG | EEG |
---|---|---|---|---|
eaw | 0.054 ** (2.69) | −0.023 (−1.37) | 0.09 *** (4.11) | −0.006 (−0.35) |
plf | 0.013 (0.44) | 0.023 (0.95) | 0.008 (0.25) | 0.034 (1.34) |
ind | −0.366 (−1.2) | −0.481 * (−1.98) | −0.878 ** (−2.84) | −0.165 (−0.63) |
sto | −0.201 (−1.52) | −0.124 (−1.13) | −0.08 (−0.58) | −0.134 (−1.15) |
hi | −0.402 (−1.97) | −0.395 * (−2.35) | −0.016 (−0.08) | −0.301 (−1.68) |
gdpp | 0.235 *** (5.97) | 0.301 *** (9.29) | 0.249 *** (6.05) | 0.327 *** (9.45) |
urb | −0.312 *** (−2.07) | 0.027 (0.28) | −0.392 *** (−2.64) | 0.075 (0.76) |
period*treated | 0.063 (1.72) | 0.081 ** (2.68) | 0.079 ** (2.66) | 0.139 *** (4.30) |
year | yes | yes | yes | yes |
Fixed-effect | yes | yes | yes | yes |
_cons | −3.761 *** (−4.29) | −2.049 ** (−2.84) | −4.732 *** (−5.16) | −2.899 *** (−3.76) |
N | 220 | 220 | 220 | 220 |
Eastern Region | Central and Western Region | |||||||
---|---|---|---|---|---|---|---|---|
Variable | EW | EEW | EG | EEG | EW | EEW | EG | EEG |
eaw | 0.085 *** (3.86) | −0.008 (−0.61) | 0.077 ** (2.91) | −0.016 (−0.79) | 0.015 (0.31) | −0.003 (−0.07) | 0.129 ** (3.12) | −0.020 (−0.51) |
plf | 0.044 (1.31) | 0.015 (0.78) | 0.062 (1.54) | −0.037 (−1.23) | 0.0034 (0.05) | 0.026 (0.46) | 0.001 (0.01) | 0.039 (0.72) |
ind | −0.550 (−1.82) | −0.013 (−0.08) | −0.741 * (−2.04) | −0.549* (−2.01) | −0.830 (−0.86) | −1.892 * (−2.38) | −1.124 (−1.37) | −1.243 (−1.65) |
sto | −0.157 (−1.19) | −0.071 (−0.95) | −0.114 (−0.72) | −0.0960 (−0.81) | −0.376 (−0.57) | −0.324 (−0.59) | −1.101 (−1.96) | −0.299 (−0.58) |
hi | −0.422 (−1.81) | −0.130 (−0.97) | −0.095 (−0.34) | −0.051 (−0.24) | −0.003 (−0.01) | −1.720 *** (−4.23) | −0.201 (−0.48) | −1.196 ** (−3.09) |
gdpp | 0.155 *** (3.46) | 0.211 *** (8.23) | 0.279 *** (5.18) | 0.259 *** (6.41) | 0.315 ** (2.78) | 0.496 *** (5.34) | 0.277 ** (2.89) | 0.430 *** (4.89) |
urb | −0.001 (−0.01) | 0.147 * (1.93) | −0.487 ** (−2.17) | 0.021 (0.56) | −0.214 * (−1.97) | 0.201 (1.04) | −0.157 (−1.41) | 0.211 (1.61) |
Period* treated | 0.070 (1.81) | 0.087 * (1.98) | 0.186 * (2.50) | 0.157 *** (4.51) | −5.104 * (−2.54) | −4.273 * (−2.60) | −2.688 (−1.58) | −4.820 ** (−3.09) |
_cons | −1.232 (−1.00) | −0.223 (−0.32) | −4.944 ** (−3.34) | −1.866 (−1.68) | 0.095 (1.08) | 0.061 (0.84) | 0.044 (0.95) | 0.088 (1.28) |
N | 130 | 130 | 130 | 130 | 90 | 90 | 90 | 90 |
Variable | EW | EEW | EG | EEG |
---|---|---|---|---|
period | −0.002 (−0.03) | −0.082 * (−2.08) | −0.048 (−0.94) | −0.071 (−1.67) |
period*treated | 0.051 (1.33) | 0.076 * (2.37) | 0.083 * (1.99) | 0.131 *** (3.80) |
eaw | 0.050 * (2.45) | −0.034 (−1.96) | 0.090 *** (4.04) | −0.02 (−1.07) |
plf | 0.007 (0.23) | 0.032 (1.23) | 0.003 (0.10) | 0.051 (1.82) |
ind | −0.381 (−1.22) | −0.471 (−1.80) | −0.976 ** (−2.87) | −0.229 (−0.81) |
sto | −0.133 (−0.94) | −0.152 (−1.29) | −0.036 (−0.23) | −0.136 (−1.07) |
hi | −0.387 (−1.72) | −0.096 (−0.51) | −0.012 (−0.05) | −0.017 (−0.08) |
gdpp | 0.231 *** (6.10) | 0.315 *** (9.94) | 0.222 *** (5.41) | 0.337 *** (9.84) |
urb | −0.197 ** (−2.84) | 0.084 (1.24) | −0.227 *** (−4.94) | 0.187 (1.57) |
_cons | −3.843 *** (−4.28) | −2.574 *** (−3.42) | −4.665 *** (−4.78) | −3.373 *** (−4.15) |
N | 198 | 198 | 198 | 198 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, S.; Zhang, F. Does an Emissions Trading Policy Improve Environmental Efficiency? Evidence from China. Sustainability 2020, 12, 2165. https://doi.org/10.3390/su12062165
Zhang Y, Li S, Zhang F. Does an Emissions Trading Policy Improve Environmental Efficiency? Evidence from China. Sustainability. 2020; 12(6):2165. https://doi.org/10.3390/su12062165
Chicago/Turabian StyleZhang, Yifei, Sheng Li, and Fang Zhang. 2020. "Does an Emissions Trading Policy Improve Environmental Efficiency? Evidence from China" Sustainability 12, no. 6: 2165. https://doi.org/10.3390/su12062165