Farm Production Diversity: Is It Important for Dietary Diversity? Panel Data Evidence from Uganda
Abstract
:1. Introduction
- How does farm production diversity (FPD) influence the following household livelihood indicators?
- Food security,
- Nutrition security, and
- Between the farm generated food security pathway and the income generated pathway via market access, which is the more important pathway through which FPD contributed to household dietary diversity?
2. Conceptual Framework
3. Materials and Methods
3.1. Measurement of Farm Production Diversity, Food, and Nutrition Security
3.2. Data Used
3.3. Empirical Model for the Impact of Farm Production Diversity on Food and Nutrition Security
3.4. Modelling Impact Pathways of Farm Production Diversity (FPD) on Nutrition
4. Results and Discussion
4.1. Descriptive Statistics Results
4.2. Empirical Results
4.2.1. Direct Impact of Farm Production Diversity (FPD) on Food Security and Nutrition
4.2.2. Food Security Impact Pathways of Farm Production Diversity on Nutrition
4.3. Discussion
4.3.1. Descriptive Results Discussion
4.3.2. Empirical Results Discussion
4.4. Robustness Check
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Food Security (Dummy) | Daily per Capita Consumption (UGX) | Nutrition Indicator (HDDS) 12 Food Groups |
---|---|---|---|
Logit-MK (1) | MK (2) | MK (3) | |
FPD (biodiversity index) | −0.043 *** | 8.509 ** | 0.036 *** |
(0.009) | (3.703) | (0.006) | |
Distance to market (kilometers) | 0.020 * | 7.324 * | 0.011 * |
(0.012) | (4.114) | (0.007) | |
Mobile phone use (dummy) | −0.372 *** | 303.2 *** | 0.486 *** |
(0.114) | (45.87) | (0.075) | |
Household size (persons) | 0.144 *** | −66.63 *** | 0.181 *** |
(0.036) | (13.77) | (0.022) | |
Male heads (dummy) | 0.122 | −97.55 | −0.318 ** |
(0.245) | (97.67) | (0.159) | |
Age of head (years) | 0.002 | 53.71 *** | 0.069 *** |
(0.018) | (7.385) | (0.012) | |
Age of head squared (years) | 1.5 × 10−5 | −0.462 *** | −0.001 *** |
(0.0002) | (0.093) | (0.0002) | |
Education (years) | 0.001 | 30.79 *** | 0.055 *** |
(0.015) | (5.630) | (0.009) | |
Shock experience (dummy) | −0.108 | 133.9 *** | 0.169 *** |
(0.085) | (33.62) | (0.055) | |
Land size (GPS acres) | 0.003 | 0.432 | 0.002 |
(0.009) | (0.875) | (0.001) | |
Year 2010/2011 | 0.289 *** | −19.63 | −0.364 *** |
(0.079) | (31.45) | (0.051) | |
Year 2011/2012 | −0.174 * | 356.7 *** | −0.168 *** |
(0.091) | (34.74) | (0.057) | |
Means of Variables | |||
Distance to market (kilometers) | −0.019 | −7.334 * | −0.010 |
(0.012) | (4.226) | (0.007) | |
Mobile phone use (dummy) | −0.791 *** | 673.0 *** | 0.987 *** |
(0.158) | (69.63) | (0.116) | |
Household size (persons) | 0.013 | −63.42 *** | −0.097 *** |
(0.038) | (15.00) | (0.025) | |
Male heads (dummy) | −0.299 | 159.1 | 0.079 |
(0.262) | (107.3) | (0.176) | |
Age of head (years) | 0.007 | 1.992 | 0.016 |
(0.022) | (9.192) | (0.015) | |
Age of head squared (years) | −4.6 × 10−5 | −0.051 | −0.0001 |
(0.0003) | (0.108) | (0.0002) | |
Education (years) | −0.104 *** | 42.67 *** | 0.077 *** |
(0.020) | (8.382) | (0.014) | |
Shock experience (dummy) | 0.242 * | −78.37 | 0.088 |
(0.145) | (65.51) | (0.110) | |
Land size (GPS acres) | −0.036 ** | 3.747 * | −0.001 |
(0.015) | (1.968) | (0.003) | |
Constant | −1.329 *** | 5093 *** | 3.259 *** |
(0.293) | (130.6) | (0.221) | |
Observations | 8616 | 8616 | 8616 |
No. of households | 3300 | 3300 | 3300 |
Wald Chi2 value | 487.94 *** | 1677.90*** | 1787.80 *** |
Appendix B
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Household Nutrition (HDDS) | Daily per Capita Consumption via Markets (UGX) | Daily per Capita Consumption from Home Production (UGX) | Farm Diversity (Biodiversity Index) | |
Daily per capita consumption via Markets (UGX) | 0.0025 *** | |||
(0.0001) | ||||
Daily per capita consumption from Farm Production (UGX) | 0.0033 *** | |||
(0.0003) | ||||
Farm production diversity (biodiversity index) | −87.69 *** | 114.8 *** | ||
(16.57) | (3.968) | |||
Distance to nearest market (kilometers) | −0.003 | −4.613 ** | ||
(0.002) | (1.925) | |||
Head uses mobile phone (dummy) | −5.407 *** | 2.096 *** | 38.39 | |
(0.620) | (556.4) | (109.1) | ||
Household size (persons) | 0.705 *** | −165.5 *** | −64.94 *** | 0.405 *** |
(0.040) | (14.66) | (4.905) | (0.017) | |
Male heads (dummy) | −0.450 *** | 154.7 ** | −13.70 | 0.995 *** |
(0.084) | (61.35) | (21.79) | (0.132) | |
Age of head (years) | −0.028 *** | 4.421 | −0.645 | 0.046 *** |
(0.004) | (3.459) | (0.736) | (0.004) | |
Education of head (years) | 0.058 *** | 7.677 | 9.975 ** | −0.108 *** |
(0.016) | (18.92) | (4.455) | (0.015) | |
Shock experience (dummy) | −0.232 *** | 221.8 *** | −65.49 *** | 1.469 *** |
(0.082) | (60.62) | (19.67) | (0.123) | |
Land size (GPS meters) | −0.001 | −1.290 ** | 0.025 *** | |
(0.002) | (0.532) | (0.003) | ||
Year 2010/2011 | −0.486 *** | 49.47 | 102.7 *** | −1.088 *** |
(0.085) | (73.32) | (22.81) | (0.145) | |
Year 2011/2012 | −1.453 *** | 380.0 *** | 224.2 *** | 0.004 |
(0.129) | (84.15) | (23.86) | (0.146) | |
Urban household (dummy) | 882.3 *** | |||
(182.2) | ||||
Productive assets (UGX) | −2.03 × 10−9 | −2.29 × 10−9 *** | ||
(9.28 × 10−8) | (5.95 × 10−10) | |||
Access to extension services (dummy) | 2.996 *** | |||
(0.145) | ||||
Free/lease hold land tenure (dummy) | 3.038 *** | |||
(0.135) | ||||
Annual precipitation (mm) | 0.0013 *** | |||
(0.0003) | ||||
Elevation (meters) | 7.34 × 10−5 | |||
(0.0003) | ||||
Constant | 1.088 *** | 1.885 *** | −1.330 | 0.171 |
(0.345) | (224.5) | (64.26) | (0.575) | |
Observations | 8491 | 8491 | 8491 | 8491 |
References
- Food and Agriculture Organization of the United Nations Home page. Sustainable Development Goals. Available online: http://www.fao.org/sustainable-development-goals/overview/en/ (accessed on 23 November 2015).
- United Nations Home Page. Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 20 February 2017).
- Grimm, M.; Wetta, C.; Nikiema, A. Burkina Faso: Shipping around the Malthusian Trap. In Growth and Poverty in Sub-Saharan Africa; Arndt, C., McKay, A., Tarp, F., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 165–189. ISBN 978-0-1987-4479-5. [Google Scholar]
- Uganda Bureau of Statistics (UBOS). Statistical Abstract. Available online: https://www.ubos.org/wp-content/uploads/publications/03_2018Statistical_Abstract_2015.pdf (accessed on 13 July 2017).
- Ssewanyana, N.S.; Okidi, A.J.; Angemi, D.; Barungi, V. Understanding the determinants of income inequality in Uganda. In Working Paper Series of the Centre for the Study of African Economies (CSAE); University of Oxford: Oxford, UK, 2004; p. 29. [Google Scholar]
- Ajakaiye, O.; Jerome, T.A.; Olaniyan, O.; Mahrt, K.; Alaba, A.O. Spatial and Temporal Multidimensional: Poverty in Nigeria. In Growth and Poverty in Sub-Saharan Africa; Arndt, C., McKay, A., Tarp, F., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 218–237. ISBN 978-0-1987-4479-5. [Google Scholar]
- Reardon, T.; Taylor, J.E.; Stamoulis, K.; Lanjouw, P.; Balisacan, A. Effects of Non-Farm Employment on Rural Income Inequality in Developing Countries: An Investment Perspective. J. Agric. Econ. 2000, 51, 266–288. [Google Scholar] [CrossRef]
- Arndt, C.; Demery, L.; McKay, A.; Tarp, F. Growth and Poverty Reduction in Tanzania. In Growth and Poverty in Sub-Saharan Africa; Arndt, C., McKay, A., Tarp, F., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 238–262. ISBN 978-0-1987-4479-5. [Google Scholar]
- Food and Nutrition Technical Assistance II Project (FANTA-2). The Analysis of the Nutrition Situation in Uganda; FHI 360: Washington, DC, USA, 2010. [Google Scholar]
- Van Campenhout, B.; Sekabira, H.; Aduayom, H.D. Poverty and its Dynamics in Uganda–Explorations Using a New Set of Poverty Lines. In Growth and Poverty in Sub-Saharan Africa; Arndt, C., McKay, A., Tarp, F., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 138–160. ISBN 978-0-1987-4479-5. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C.; et al. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.D.; Shrinivas, A.; Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 2014, 46, 1–12. [Google Scholar] [CrossRef]
- Islam, A.H.M.S.; von Braun, J.; Thorne-Lyman, L.A.; Ahmed, U.A. Farm diversification and food and nutrition security in Bangladesh: Empirical evidence from nationally representative household panel data. Food Secur. 2018, 10, 701–720. [Google Scholar] [CrossRef]
- Koppmair, S.; Kassie, M.; Qaim, M. Farm production, market access and dietary diversity in Malawi. Public Health Nutr. 2017, 20, 325–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minten, B.; Barrett, C.B. Agricultural technology, productivity, and poverty in Madagascar. World Dev. 2008, 36, 797–822. [Google Scholar] [CrossRef]
- Sibhatu, K.T.; Krishna, V.V.; Qaim, M. Production diversity and dietary diversity in smallholder farm households. Proc. Natl. Acad. Sci. USA 2015, 112, 10657–10662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, C.W.; Luedeling, E.; Hensel, O.; Tabuti, J.R.S.; Krawinkel, M.; Gebauer, J.; Kehlenbeck, K. The role of home gardens for food and nutrition security in Uganda. Hum. Ecol. 2018, 46, 497–514. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Animal Industry and Fisheries (MAAIF). Agriculture for Food and Income Security: Agriculture Sector Development Strategy and Investment Plan: 2010/11-2014/15; Ministry of Agriculture, Animal Industry and Fisheries (MAAIF): Kampala, Uganda, 2010; p. 78.
- Ministry of Agriculture, Animal Industry and Fisheries (MAAIF). Agriculture Sector Strategic Plan 2015/16-2019/20. Available online: https://www.agriculture.go.ug/agriculture-sector-strategic-plan-assp/ (accessed on 23 November 2017).
- National Planning Authority. Uganda Vision 2040. Available online: http://www.npa.go.ug/uganda-vision-2040/ (accessed on 13 February 2017).
- Benson, T. Improving Nutrition as a Development Priority: Addressing under Nutrition in National Policy Processes in Sub-Saharan Africa; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2008; Research Report 156; pp. 42–68. [Google Scholar]
- Haddinott, J. Agriculture, health, and nutrition: Towards conceptualizing the linkages. In Reshaping Agriculture for Nutrition and Health; Fan, S., Pandya-Lorch, R., Eds.; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2012; Chapter 2; pp. 13–20. ISBN 978-0-8962-9673-2. [Google Scholar]
- Mello, J.A.; Gans, K.M.; Risica, P.M.; Kirtania, U.; Strolla, L.O.; Fournier, L. How Is Food Insecurity Associated with Dietary Behaviors? An Analysis with Low-Income, Ethnically Diverse Participants in a Nutrition Intervention Study. J. Acad. Nutr. Diet. 2010, 110, 1906–1911. [Google Scholar] [CrossRef] [Green Version]
- Shariff, Z.M.; Khor, G.L. Obesity and Household Food Insecurity: Evidence from a Sample of Rural Households in Malaysia. Eur. J. Clin. Nutr. 2005, 59, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Webb, P.; Kennedy, E. Impacts of Agriculture on Nutrition: Nature of the evidence and research gaps. Food Nutr. Bull. 2014, 35, 126–132. [Google Scholar] [CrossRef]
- Arndt, C.; McKay, A.; Tarp, F. Growth and Poverty in Sub-Saharan Africa; Oxford University Press: Oxford, UK, 2016; ISBN 978-0-1987-4479-5. [Google Scholar]
- Arndt, C.; Tarp, F. Measuring Poverty and Wellbeing in Developing Countries; Oxford University Press: Oxford, UK, 2017; ISBN 978-0-1987-4480-1. [Google Scholar]
- Van Campenhout, B.; Sekabira, H.; Nattembo, F. Uganda: A New Set of Utility-Consistent Poverty Lines. In Measuring Poverty and Wellbeing in Developing Countries; Arndt, C., Tarp, F., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 139–161. ISBN 978-0-1987-4480-1. [Google Scholar]
- Di Falco, S.; Chavas, J.P. On Crop Biodiversity, Risk Exposure, and Food Security in the Highlands of Ethiopia. Am. J. Agric. Econ. 2009, 91, 599–611. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Central Data Catalog: Living Standards Measurement Study, Uganda. Available online: https://microdata.worldbank.org/index.php/catalog#_r=1568635091798&collection=&country=&dtype=&from=1890&page=1&ps=&sid=&sk=LSMS%20Uganda&sort_by=rank&sort_order=desc&to=2019&topic=&view=s&vk= (accessed on 21 January 2017).
- Arndt, C.; Simler, K.R. Estimating Utility–Consistent Poverty Lines with Applications to Egypt and Mozambique. Econ. Dev. Cult. Change 2010, 58, 449–474. [Google Scholar] [CrossRef] [Green Version]
- Swindale, A.; Bilinsky, P. Household Dietary Diversity Score for Measurement of Household Food Access: Indicator Guide; Food and Nutrition Technical Assistance Project (FANTA): Washington, DC, USA, 2006. [Google Scholar]
- Kennedy, L.G.; Pedro, L.R.; Seghieri, C.; Nantel, G.; Brouwer, I. Dietary Diversity Score Is a Useful Indicator of Micronutrient Intake in Non-Breast-Feeding Filipino Children. J. Nutr. 2007, 137, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Fongar, A.; Gödecke, T.; Aseta, A.; Qaim, M. How well do different dietary and nutrition assessment tools match? Insights from rural Kenya. Public Health Nutr. 2018, 22, 391–403. [Google Scholar] [CrossRef]
- Sekabira, H.; Qaim, M. Can mobile phones improve gender equality and nutrition? Panel data evidence from farm households in Uganda. Food Policy 2017, 73, 95–103. [Google Scholar] [CrossRef]
- Wanyama, R.; Goedecke, T.; Qaim, M. Food Security and Dietary Quality in African Slums. Sustainability 2019, 11, 5999. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-2622-3258-6. [Google Scholar]
- Sassi, M. Seasonality and Nutrition-Sensitive Agriculture in Kenya: Evidence from Mixed-Methods Research in Rural Lake Naivasha Basin. Sustainability 2019, 11, 6223. [Google Scholar] [CrossRef] [Green Version]
- Baltagi, B.H.; Song, S.H. Unbalanced panel data: A survey. Stat. Pap. 2006, 47, 493–523. [Google Scholar] [CrossRef]
- Munyegera, G.K.; Matsumoto, T. Mobile money, remittances, and household welfare: Panel evidence from rural Uganda. World Dev. 2016, 79, 127–137. [Google Scholar] [CrossRef]
- S ekabira, H.; Qaim, M. Mobile money, agricultural marketing, and off-farm income in Uganda. Agric. Econ. 2017, 48, 597–611. [Google Scholar] [CrossRef]
- Mundlak, Y. On the pooling of time series and cross section data. Econometrica 1978, 46, 69–85. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zellner, A.; Theil, H. Three-Stage Least Squares: Simultaneous estimation of simultaneous equations. Econometrica 1962, 30, 54–78. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Shankara, V.; Mannering, F. Modeling the endogeneity of lane-mean speeds and lane-speed deviations: A structural equations approach. Transp. Res. Part A Policy Pract. 1998, 32, 311–322. [Google Scholar] [CrossRef]
Variable | 2009/2010 | 2010/2011 | 2011/2012 | Pooled Sample | |
---|---|---|---|---|---|
Mean (Std. Dev.) | Mean (Std. Dev.) | Mean (Std. Dev.) | Mean (Std. Dev.) | Range | |
Dependent variables | |||||
Household dietary diversity score (HDDS) | 7.629 (2.329) | 7.436 (2.389) | 7.772 (2.281) | 7.616 (2.336) | 11 |
Food secure HHs (CPI weighted utility consistent food poverty line) (percentage) | 21.981 (41.418) | 28.115 (44.964) | 21.259 (40.921) | 23.674 (42.511) | 100 |
CPI weighted utility consistent food poverty line (UGX) | 1453.99 (177.67) | 1564.24 (189.74) | 1689.13 (181.44) | 1568.13 (207.08) | 675.129 |
Farm production diversity, FPD (biodiversity index) | 11.402 (4.889) | 10.261 (4.010) | 11.677 (3.681) | 11.134 (4.278) | 33 |
Explanatory variables | |||||
Distance to nearest market (kilometers) | 28.914 (19.385) | 29.456 (19.154) | 29.344 (18.795) | 29.230 (19.114) | 85.81 |
Location of HH was urban (percentage) | 25.849 (43.788) | 22.496 (41.764) | 20.491 (40.371) | 22.995 (42.082) | 100 |
Male gender of HH head (percentage) | 71.899 (44.957) | 69.591 (46.011) | 69.263 (46.148) | 70.286 (45.703) | 100 |
Household size (persons) | 6.293 (3.291) | 7.059 (3.555) | 7.511 (3.790) | 6.946 (3.585) | 27 |
Education of HH head (years) | 5.509 (4.082) | 5.258 (3.935) | 5.238 (3.961) | 5.335 (3.996) | 16 |
HH head used mobile phones (percentage) | 51.554 (49.984) | 55.962 (49.652) | 63.471 (48.159) | 56.909 (49.523) | 100 |
Age of the HH head (years) | 44.732 (15.146) | 45.935 (15.159) | 46.064 (15.117) | 45.561 (15.151) | 86 |
HH experienced shocks (percentage) | 60.082 (48.981) | 44.034 (49.652) | 35.671 (47.911) | 46.854 (49.904) | 100 |
Land size (acres measured by GPS) | 3.744 (5.499) | 3.235 (4.839) | 2.932 (4.375) | 3.346 (4.994) | 47.34 |
Pathways analysis variables | |||||
Total daily household per capita food consumption (UGX) | 2317.47 (1948.15) | 2275.02 (1953.03) | 2769.67 (2301.63) | 2456.13 (2086.99) | 18,860.12 |
Daily per capita food consumption via markets (UGX) (proxy for MFS) | 1671.27 (1909.82) | 1720.38 (1915.32) | 1967.57 (2180.30) | 1786.41 (2010.51) | 18,867.86 |
Daily per capita food consumption from own production (UGX) (proxy for FFS) | 815.22 (648.11) | 739.29 (624.90) | 950.85 (847.58) | 836.86 (720.04) | 8600 |
Explanatory Variables | Food Security Dummy | HDDS with 12 Food Groups | ||
---|---|---|---|---|
RE (1) | FE (2) | RE (3) | FE (4) | |
Farm Production Diversity (biodiversity index) | 0.023 *** | −0.015 | 0.036 *** | 0.043 *** |
(0.006) | (0.011) | (0.005) | (0.007) | |
Year 2010/2011 | 0.469 *** | 0.401 *** | −0.214 *** | −0.232 *** |
(0.073) | (0.076) | (0.049) | (0.051) | |
Year 2011/2012 | −0.049 | −0.016 | 0.069 | 0.057 |
(0.074) | (0.076) | (0.048) | (0.049) | |
Constant | −2.001 *** | 7.147 *** | 7.140 *** | |
(0.091) | (0.064) | (0.077) | ||
Observations | 8616 | 3250 | 8616 | 8616 |
No. of households | 3300 | 1108 | 3300 | 3300 |
Wald χ2 value | 67.65 *** | 101.86 *** | ||
F-value | 46.89 *** | 29.90 *** | ||
Hausman test value | 31.13 *** | 10.83 ** |
Explanatory Variables | Household Dietary Diversity Score (HDDS of 12 Food Groups) | |||||
---|---|---|---|---|---|---|
RE (1) | FE (2) | RE (3) | FE (4) | RE (5) | FE (6) | |
Farm production diversity (biodiversity index) | 0.059 *** | 0.038 *** | 0.053 *** | 0.038 *** | 0.023 *** | 0.033 *** |
(0.004) | (0.006) | (0.005) | (0.007) | (0.005) | (0.006) | |
Daily per capita (DPC) food consumption (UGX) | 0.0005 *** | 0.0005 *** | ||||
(1.1 × 10−5) | (1.4 × 10−5) | |||||
DPC food consumption via markets (UGX) | 0.0004 *** | 0.0004 *** | 0.0004 *** | 0.0004 *** | ||
(1.2 × 10−5) | (1.6 × 10−5) | (1.2 × 10−5) | (1.5 × 10−5) | |||
DPC food consumption via own production (UGX) | 0.0005 *** | 0.0006 *** | 0.0006 *** | 0.0006 *** | ||
(2.9 × 10−5) | (3.5 × 10−5) | (2.8 × 10−5) | (3.4 × 10−5) | |||
HH head uses a mobile phone (yes = 1) | 0.751 *** | 0.415 *** | ||||
(0.052) | (0.068) | |||||
Distance to market (kilometers) | 0.004 ** | 0.014 ** | ||||
(0.002) | (0.006) | |||||
Household size (persons) | 0.220 *** | 0.291 *** | ||||
(0.009) | (0.021) | |||||
Male gender of HH head (male = 1) | −0.340 *** | −0.503 *** | ||||
(0.064) | (0.143) | |||||
Age of HH head (years) | 0.001 | 0.011 *** | ||||
(0.002) | (0.004) | |||||
Education of HH head (years) | 0.085 *** | 0.049 *** | ||||
(0.006) | (0.008) | |||||
HH experienced shocks (yes = 1) | 0.119 *** | 0.088 * | ||||
(0.044) | (0.049) | |||||
Land size (GPS acres) | 0.001 | 0.002 * | ||||
(0.001) | (0.001) | |||||
Year 2010/2011 | −0.170 *** | −0.229 *** | −0.180 *** | −0.227 *** | −0.391 *** | −0.462 *** |
(0.0435) | (0.0450) | (0.0449) | (0.0465) | (0.045) | (0.048) | |
Year 2011/2012 | −0.145 *** | −0.152 *** | −0.139 *** | −0.153 *** | −0.456 *** | −0.562 *** |
(0.0431) | (0.0445) | (0.0445) | (0.0460) | (0.046) | (0.054) | |
Constant | 5.779 *** | 6.002 *** | 5.920 *** | 6.085 *** | 3.981 *** | 3.211 *** |
(0.0646) | (0.0742) | (0.0675) | (0.0772) | (0.120) | (0.244) | |
Observations | 8616 | 8616 | 8616 | 8616 | 8616 | 8616 |
No. of households | 3300 | 3300 | 3300 | 3300 | 3300 | 3300 |
Wald χ2 value | 2323.73 *** | 1656.74 *** | 3461.55 *** | |||
F-value | 389.02 *** | 231.18 *** | 131.70 *** | |||
Hausman test value | 37.16 *** | 59.46 *** | 144.50 *** | |||
Overall R-squared | 0.208 | 0.203 | 0.160 | 0.156 | 0.325 | 0.266 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekabira, H.; Nalunga, S. Farm Production Diversity: Is It Important for Dietary Diversity? Panel Data Evidence from Uganda. Sustainability 2020, 12, 1028. https://doi.org/10.3390/su12031028
Sekabira H, Nalunga S. Farm Production Diversity: Is It Important for Dietary Diversity? Panel Data Evidence from Uganda. Sustainability. 2020; 12(3):1028. https://doi.org/10.3390/su12031028
Chicago/Turabian StyleSekabira, Haruna, and Shamim Nalunga. 2020. "Farm Production Diversity: Is It Important for Dietary Diversity? Panel Data Evidence from Uganda" Sustainability 12, no. 3: 1028. https://doi.org/10.3390/su12031028