Expert Evaluation of the Significance of Criteria for Electric Vehicle Deployment: A Case Study of Lithuania
Abstract
:1. Introduction
2. Literature Review
2.1. Electric Vehicle Deployment Issues in Different Regions
2.2. Expert Evaluation-Based Studies for Sustainable Transport
3. A Model for the Dynamics of EV Deployment in Lithuania
4. Factors Affecting EV Deployment in the Country
- The preparation of regulations on the evaluation of EV benefits, deployment, and exploitation manner.
- Technical and exploitation parameters of the used electric vehicles.
- The action of the initiative subjects for EV deployment.
- The installation and development of infrastructure for public charging.
- Economic factors.
- Social factors.
- Environmental factors.
- A1.
- Complex projects and studies that establish the need and implementation possibilities of EV infrastructure deployment.
- A2.
- Permissions set out in the traffic regulation for driving in a bus lane.
- A3.
- Road signs and markings indicating that complying with traffic regulation road signs are not valid for EVs and have been put into use on the roads.
- A4.
- Marking of EV parking spaces specified in traffic regulation.
- A5.
- European safety and technical regulations on high-power charging stations.
- A6.
- The preparation of a law regulating EV deployment and use.
- A7.
- A roadmap to a single European transport area (‘White paper on transport’); Paris Agreement in line with the UN Climate Change Conference; the documents prepared by the European Commission regulating the development of environmentally friendly transport; the resolutions of the Glasgow United Nations Climate Change Conference.
- B1.
- EV manufacturer (brand), production, construction, and guarantee period.
- B2.
- Battery durability determined by the number of potential charge–discharge cycles.
- B3.
- EV driving comfort and ergonomics.
- B4.
- EV driving range on one charge, EV driving safety, maximum speed, and dynamics (acceleration).
- B5.
- An obligation to equip EVs with an acoustic vehicle alerting system.
- B6.
- The relatively small size of EVs and simple use are advantages for driving in the city.
- B7.
- Significantly increased energy consumption to heat the EV cabin in winter or cold climates.
- B8.
- Long EV charging time (longer than the duration of refuelling fuel tank) and the ban on EV charging for an unlimited time from 2022.
- C1.
- The initiative for state institutions (Ministry of Transport and Communications of the Republic of Lithuania, Ministry of the Economy and Innovations of the Republic of Lithuania, Municipalities, etc.).
- C2.
- The initiative for private businessmen (legal entities operating in the EV deployment business).
- C3.
- An individual initiative for residents (potential EV users).
- C4.
- The establishment of the Electric Vehicle Association in Lithuania.
- C5.
- The establishment of an international working group to promote EV transport activities in Lithuania.
- C6.
- Initiative and active actions taken by EV manufacturers.
- D1.
- The construction and development of low- and middle-power charging points (up to 22 kW, AC) and Type 2 charging connector.
- D2.
- The construction and deployment of rapid charging points (more than 22 kW, DC).
- D3.
- The lack of public charging points in the five largest cities and resorts of Lithuania and in the Trans-European Transport Network (TEN-T).
- D4.
- The anticipation of public charging points in planned urban areas.
- D5.
- The installation of low-power charging points in individual houses.
- E1.
- The price of the installation of charging stations and underground cables (power inputs) for the power supply.
- E2.
- Increasing prices and the probable (potential) shortage of electric energy in charging stations.
- E3.
- Tax benefits and purchase incentives for EVs.
- E4.
- Higher costs of manufacturing and purchasing EVs compared to the price for a fossil-fuel-powered vehicle.
- E5.
- The price of electricity is lower than that of fuel consumed for the same driving range, which tends to increase.
- E6.
- The high price of replacing a battery for a new one.
- E7.
- The reluctance of business competitors to cooperate on non-discriminatory terms in EV deployment.
- E8.
- The possibility of using excess pollution permits for EV deployment.
- E9.
- Exemption from the EV parking fee in the charged parking slots.
- E10.
- Lower costs of EV exploitation, rejecting the need to change engine oil and filter, slower wear of brake pads.
- F1.
- Understanding that reducing environmental pollution is the responsibility of every citizen.
- F2.
- The promotion of a positive attitude towards EV expansion in the environment, life quality, and demonstrations held by climate activists.
- F3.
- The sense of exclusivity and innovation experienced by the EV owner.
- F4.
- Positive attitude of friends, acquaintances, and authoritative persons towards EVs.
- F5.
- Lower risk of an EV being stolen.
- F6.
- EV suitability for car sharing in the city.
- F7.
- Requirements for state employees driving EVs purchased for pollution permits.
- F8.
- Teaching courses on EVs in colleges and universities.
- G1.
- EVs do not emit any pollution into the air while driving.
- G2.
- EVs do not separate liquids after a collision and, thus, do not pollute the roadside environment, e.g., soil or water.
- G3.
- Increased ecology of EVs while using energy from nuclear, renewable, or hydroelectric power plant energy sources.
- G4.
- Pollution from electricity production in power plants for EVs is lower than emissions from a conventional vehicle.
- G5.
- The EV powertrain emits less noise (noise from tyres and aerodynamics is close to that of a conventional vehicle).
- G6.
- Low efficiency in recycling technologies for lithium-ion batteries, complicated extinguishing, and high fire emissions.
5. Research Methodology
5.1. Principles of Determining the Significance of the Criteria
5.2. ARTIW-L Method
5.3. Consistency of the Opinions of the Expert Group
5.4. ARTIW-N Method
5.5. Analytic Hierarchy Process (AHP)
5.6. The Average of the Local Weights of the Main Criteria and Sub-Criteria
5.7. Calculating the Global Weights of the Sub-Criteria
6. Experts
7. Results and Discussion
7.1. The Ranks of the Main Criteria and Sub-Criteria and the Consistency of Expert Opinions
7.2. Local Weights Calculated Using Different MCDM Methods
7.3. Global Weights and Priorities of the Sub-Criteria
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Automobile Industry Pocket Guide 2022–2023. ACEA-European Automobile Manufacturers’ Association. Available online: https://www.acea.auto/publication/automobile-industry-pocket-guide-2022-2023/ (accessed on 27 September 2023).
- Average CO2 Emissions from New Passenger Cars, by EU Country. ACEA-European Automobile Manufacturers’ Association. Available online: https://www.acea.auto/figure/average-co2-emissions-from-new-passenger-cars-by-eu-country/ (accessed on 26 September 2020).
- Fit for 55: Zero CO2 Emissions for New Cars and Vans in 2035|News|European Parliament. Available online: https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035 (accessed on 26 September 2023).
- Brown, S.; Pyke, D.; Steenhof, P. Electric vehicles: The role and importance of standards in an emerging market. Energy Policy 2010, 38, 3797–3806. [Google Scholar] [CrossRef]
- Global EV Outlook 2024. IEA-International Energy Agency. Available online: https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars (accessed on 11 July 2024).
- Zhang, T.-Y.; Yang, Y.; Zhu, Y.-T.; Yao, E.-J.; Wu, K.-Q. Deploying Public Charging Stations for Battery Electric Vehicles on the Expressway Network Based on Dynamic Charging Demand. IEEE Trans. Transp. Electrific. 2022, 8, 2531–2548. [Google Scholar] [CrossRef]
- Zhao, Z.; Lee, C.K.M.; Ren, J.; Tsang, Y. Quality of service measurement for electric vehicle fast charging stations: A new evaluation model under uncertainties. Transp. A Transp. Sci. 2023, 2232044. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Lu, D.; Li, X. Impact of policy incentives on the adoption of electric vehicle in China. Transp. Res. Part A Policy Pract. 2023, 176, 103801. [Google Scholar] [CrossRef]
- Luo, T.; Song, Y.; Li, G. An agent-based simulation study for escaping the “chicken-egg” dilemma between electric vehicle penetration and charging infrastructure deployment. Resour. Conserv. Recycl. 2023, 194, 106966. [Google Scholar] [CrossRef]
- Haidar, B.; Aguilar Rojas, M.T. The relationship between public charging infrastructure deployment and other socio-economic factors and electric vehicle adoption in France. Res. Transp. Econ. 2022, 95, 101208. [Google Scholar] [CrossRef]
- Hedegaard, K.; Ravn, H.; Juul, N.; Meibom, P. Effects of electric vehicles on power systems in Northern Europe. Energy 2012, 48, 356–368. [Google Scholar] [CrossRef]
- Esmaeili, M.; Anvari-Moghaddam, A.; Muyeen, S.M.; Peric, V.S. On the Role of Renewable Energy Policies and Electric Vehicle Deployment Incentives for a Greener Sector Coupling. IEEE Access 2022, 10, 53873–53893. [Google Scholar] [CrossRef]
- Dong, J.; Liu, C.; Lin, Z. Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transp. Res. Part C Emerg. Technol. 2014, 38, 44–55. [Google Scholar] [CrossRef]
- Wattana, B.; Wattana, S. Implications of electric vehicle promotion policy on the road transport and electricity sectors for Thailand. Energy Strat. Rev. 2022, 42, 100901. [Google Scholar] [CrossRef]
- Paudel, A.; Pinthurat, W.; Marungsri, B. Impact of Large-Scale Electric Vehicles’ Promotion in Thailand Considering Energy Mix, Peak Load, and Greenhouse Gas Emissions. Smart Cities 2023, 6, 2619–2638. [Google Scholar] [CrossRef]
- Farid, A.M.; Viswanath, A.; Al-Junaibi, R.; Allan, D.; Van Der Wardt, T.J.T. Electric Vehicle Integration into Road Transportation, Intelligent Transportation, and Electric Power Systems: An Abu Dhabi Case Study. Smart Cities 2021, 4, 1039–1057. [Google Scholar] [CrossRef]
- Mangipinto, A.; Lombardi, F.; Sanvito, F.D.; Pavičević, M.; Quoilin, S.; Colombo, E. Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries. Appl. Energy 2022, 312, 118676. [Google Scholar] [CrossRef]
- Fernández, R.A. Stochastic analysis of future scenarios for battery electric vehicle deployment and the upgrade of the electricity generation system in Spain. J. Clean. Prod. 2021, 316, 128101. [Google Scholar] [CrossRef]
- Csonka, B.; Csiszár, C. Integrated information service for plug-in electric vehicle users including smart grid functions. Transport 2019, 34, 135–145. [Google Scholar] [CrossRef]
- Csiszár, C.; Pauer, G. Concept of an integrated mobile application aiding electromobility. Transport 2019, 34, 187–194. [Google Scholar] [CrossRef]
- Palevičius, V.; Podviezko, A.; Sivilevičius, H.; Prentkovskis, O. Decision-Aiding Evaluation of Public Infrastructure for Electric Vehicles in Cities and Resorts of Lithuania. Sustainability 2018, 10, 904. [Google Scholar] [CrossRef]
- Chang, T.-W. An indispensable role in promoting the electric vehicle Industry: An empirical test to explore the integration framework of electric vehicle charger and electric vehicle purchase behavior. Transp. Res. Part A Policy Pract. 2023, 176, 103824. [Google Scholar] [CrossRef]
- Kim, J.; Rasouli, S.; Timmermans, H. A hybrid choice model with a nonlinear utility function and bounded distribution for latent variables: Application to purchase intention decisions of electric cars. Transp. A Transp. Sci. 2016, 12, 909–932. [Google Scholar] [CrossRef]
- Pasaoglu, G.; Zubaryeva, A.; Fiorello, D.; Thiel, C. Analysis of European mobility surveys and their potential to support studies on the impact of electric vehicles on energy and infrastructure needs in Europe. Technol. Forecast. Soc. Chang. 2014, 87, 41–50. [Google Scholar] [CrossRef]
- Ossadnik, W.; Schinke, S.; Kaspar, R.H. Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis. Group Decis. Negot. 2016, 25, 421–457. [Google Scholar] [CrossRef]
- Aba, A.; Esztergár-Kiss, D. Creation of the MaaS readiness index with a modified AHP-ISM method. Commun. Transp. Res. 2024, 4, 100122. [Google Scholar] [CrossRef]
- Ruoso, A.C.; Ribeiro, J.L.D. An assessment of barriers and solutions for the deployment of electric vehicles in the Brazilian market. Transp. Policy 2022, 127, 218–229. [Google Scholar] [CrossRef]
- Murugan, M.; Marisamynathan, S. Elucidating the Indian customers requirements for electric vehicle adoption: An integrated analytical hierarchy process–Quality function deployment approach. Case Stud. Transp. Policy 2022, 10, 1045–1057. [Google Scholar] [CrossRef]
- Rizvi, S.R.; Zehra, S.; Olariu, S. ASPIRE: An Agent-Oriented Smart Parking Recommendation System for Smart Cities. IEEE Intell. Transport. Syst. Mag. 2019, 11, 48–61. [Google Scholar] [CrossRef]
- Javid, R.J.; Nejat, A.; Hayhoe, K. Selection of CO2 mitigation strategies for road transportation in the United States using a multi-criteria approach. Renew. Sustain. Energy Rev. 2014, 38, 960–972. [Google Scholar] [CrossRef]
- Duleba, S. An ahp-ism approach for considering public preferences in a public transport development decision. Transport 2019, 34, 662–671. [Google Scholar] [CrossRef]
- Soria-Lara, J.A.; Banister, D. Evaluating the impacts of transport backcasting scenarios with multi-criteria analysis. Transp. Res. Part A Policy Pract. 2018, 110, 26–37. [Google Scholar] [CrossRef]
- Gazzeh, K. Ranking Sustainable Smart City Indicators Using Combined Content Analysis and Analytic Hierarchy Process Techniques. Smart Cities 2023, 6, 2883–2909. [Google Scholar] [CrossRef]
- Choi, H.; Koo, Y. Effectiveness of battery electric vehicle promotion on particulate matter emissions reduction. Transp. Res. Part D Transp. Environ. 2021, 93, 102758. [Google Scholar] [CrossRef]
- Yu, A.S.O.; Silva, L.L.C.; Chu, C.L.; Nascimento, P.T.S.; Camargo, A.S. Electric vehicles: Struggles in creating a market. In Proceedings of the 2011 Proceedings of PICMET ’11: Technology Management in the Energy Smart World (PICMET), Portland, OR, USA, 31 July–4 August 2011; pp. 1–13. Available online: https://ieeexplore.ieee.org/abstract/document/6017911 (accessed on 26 September 2023).
- Iqbal, A.; Olariu, S. A Survey of Enabling Technologies for Smart Communities. Smart Cities 2020, 4, 54–77. [Google Scholar] [CrossRef]
- Statistical Quality Control: A Modern Introduction, 7th Edition International Student Version|Wiley. Available online: https://www.wiley.com/en-ie/Statistical+Quality+Control%3A+A+Modern+Introduction%2C+7th+Edition+International+Student+Version-p-9781118531372 (accessed on 26 September 2023).
- Maskeliūnaitė, L.; Sivilevičius, H. Identifying the Importance of Criteria for Passenger Choice of Sustainable Travel by Train Using ARTIW and IHAMCI Methods. Appl. Sci. 2021, 11, 11503. [Google Scholar] [CrossRef]
- Kendall, M.G.; Gibbons, J.D. Rank Correlation Methods, 5th ed.; Arnold, E., Ed.; Oxford University Press: London, UK; New York, NY, USA, 1990; Available online: http://www.zentralblatt-math.org/zmath/en/search/?an=0732.62057 (accessed on 27 September 2023).
- Maskeliūnaitė, L.; Meilus, L.; Sivilevičius, H. Application of expert evaluation methods in determining the significance of criteria for usability of railway traction rolling stock. Transport 2023, 38, 77–86. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; 2d impression; Griffin: London, UK, 1975. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Hofner Publishing House: New York, NY, USA, 1955. [Google Scholar]
- Sivilevičius, H. Application of Expert Evaluation Method to Determine the Importance of Operating Asphalt Mixing Plant Quality Criteria and Rank Correlation. Balt. J. Road Bridge Eng. 2011, 6, 48–58. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introductionto Statistical Quality Control, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Co.: New York, NY, USA, 1980; Available online: http://www.gbv.de/dms/hbz/toc/ht000345674.pdf (accessed on 26 September 2023).
- Liao, M.-S.; Ding, J.-F.; Liang, G.-S.; Lee, K.-L. Key Criteria for Evaluating the Green Performance of Ports. J. Test. Eval. 2016, 44, 20140354. [Google Scholar] [CrossRef]
- Stanujkic, D. An extension of the ratio system approach of moora method for group decision-making based on interval-valued triangular fuzzy numbers. Technol. Econ. Dev. Econ. 2015, 22, 122–141. [Google Scholar] [CrossRef]
- Brunelli, M. Introduction to the Analytic Hierarchy Process; SpringerBriefs in Operations Research; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Šakalys, R.; Sivilevičius, H.; Miliauskaitė, L.; Šakalys, A. Investigation and evaluation of main indicators impacting synchromodality using ARTIW and AHP methods. Transport 2019, 34, 300–311. [Google Scholar] [CrossRef]
- Operations Research: An Introduction 9th Edition by Taha, Hamdy a-AbeBooks. Available online: https://www.abebooks.com/book-search/isbn/9780132555937/ (accessed on 26 September 2023).
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; Analytic hierarchy process series; RWS Publications: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Miller, G.A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 1956, 63, 81–97. [Google Scholar] [CrossRef]
- Saaty, T.L.; Ozdemir, M.S. Why the magic number seven plus or minus two. Math. Comput. Model. 2003, 38, 233–244. [Google Scholar] [CrossRef]
Statistics | Main Criteria from A to G | Sub-Criteria i = 1, 2, …, m | ||||||
---|---|---|---|---|---|---|---|---|
A1, …, A7 | B1, …, B8 | C1, …, C6 | D1, …, D5 | E1, …, E10 | F1, …, F8 | G1, …, G6 | ||
W | 0.2912 | 0.2222 | 0.3228 | 0.3730 | 0.2903 | 0.4810 | 0.3681 | 0.5937 |
Wmin | 0.1749 | 0.1749 | 0.1675 | 0.1845 | 0.1977 | 0.1567 | 0.1675 | 0.1845 |
χ2 | 20.96 | 16.00 | 27.11 | 22.38 | 13.93 | 51.93 | 30.92 | 35.62 |
12.59 | 12.59 | 14.07 | 11.07 | 9.49 | 16.92 | 14.07 | 11.07 | |
1.665 | 1.271 | 1.927 | 2.022 | 1.468 | 3.070 | 2.200 | 3.218 | |
5.72 | 5.72 | 5.97 | 5.42 | 5.06 | 6.38 | 5.97 | 5.42 | |
0.29 | 0.22 | 0.32 | 0.37 | 0.29 | 0.48 | 0.37 | 0.59 |
Main Criteria from A to G | Sub-Criteria | |||||||
---|---|---|---|---|---|---|---|---|
A1, …, A7 | B1, …, B8 | C1, …, C6 | D1, …, D5 | E1, …, E10 | F1, …, F8 | G1, …, G6 | ||
min | 0.0080 | 0.0173 | 0.0124 | 0.0097 | 0.0082 | 0.0301 | 0.0218 | 0.0131 |
max | 0.0803 | 0.0893 | 0.0826 | 0.0712 | 0.0780 | 0.0998 | 0.1103 | 0.0920 |
MCDM Method | Main Criteria i = 1, 2, …, m | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
0.1280 | 0.1637 | 0.1339 | 0.1934 | 0.1667 | 0.0625 | 0.1518 | |
0.1212 | 0.1567 | 0.1260 | 0.2072 | 0.1606 | 0.0856 | 0.1427 | |
0.1187 | 0.1694 | 0.1123 | 0.2172 | 0.1672 | 0.0530 | 0.1622 | |
0.1226 | 0.1633 | 0.1241 | 0.2059 | 0.1648 | 0.0670 | 0.1523 | |
Priority | 6 | 3 | 5 | 1 | 2 | 7 | 4 |
MCDM Method | Sub-Criteria i = 1, 2, …, m | ||||||
---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | A7 | |
0.1875 | 0.1339 | 0.0893 | 0.1190 | 0.1220 | 0.1697 | 0.1786 | |
0.1961 | 0.1269 | 0.0980 | 0.1156 | 0.1177 | 0.1659 | 0.1798 | |
0.2107 | 0.1039 | 0.0824 | 0.1105 | 0.1149 | 0.1771 | 0.2005 | |
0.1981 | 0.1216 | 0.0899 | 0.1150 | 0.1182 | 0.1709 | 0.1863 | |
Priority | 1 | 4 | 7 | 6 | 5 | 3 | 2 |
MCDM Method | Sub-Criteria i = 1, 2, …, m | |||||||
---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
0.1319 | 0.1736 | 0.1343 | 0.1482 | 0.0671 | 0.0764 | 0.1065 | 0.1620 | |
0.1217 | 0.1881 | 0.1242 | 0.1411 | 0.0786 | 0.0828 | 0.1001 | 0.1634 | |
0.1198 | 0.2026 | 0.1439 | 0.1649 | 0.0545 | 0.0586 | 0.0826 | 0.1731 | |
0.1245 | 0.1881 | 0.1341 | 0.1514 | 0.0667 | 0.0726 | 0.0964 | 0.1662 | |
Priority | 5 | 1 | 4 | 3 | 8 | 7 | 6 | 2 |
MCDM Method | Sub-Criteria i = 1, 2, …, m | |||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | |
0.2301 | 0.1786 | 0.1310 | 0.1151 | 0.1151 | 0.2301 | |
0.2426 | 0.1617 | 0.1237 | 0.1147 | 0.1147 | 0.2426 | |
0.2915 | 0.1536 | 0.1030 | 0.0895 | 0.0827 | 0.2797 | |
0.2547 | 0.1646 | 0.1192 | 0.1065 | 0.1042 | 0.2508 | |
Priority | 1 | 3 | 4 | 5 | 6 | 2 |
MCDM Method | Sub-Criteria i = 1, 2, …, m | ||||
---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | |
0.2000 | 0.2445 | 0.2445 | 0.2055 | 0.1055 | |
0.1894 | 0.2436 | 0.2436 | 0.1948 | 0.1286 | |
0.1858 | 0.3109 | 0.2444 | 0.1802 | 0.0787 | |
0.1917 | 0.2663 | 0.2442 | 0.1935 | 0.1043 | |
Priority | 4 | 1 | 2 | 3 | 5 |
MCDM Method | Sub-Criteria i = 1, 2, …, m | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | |
0.1076 | 0.0697 | 0.1576 | 0.1606 | 0.1273 | 0.1015 | 0.0515 | 0.0651 | 0.0803 | 0.0788 | |
0.0886 | 0.0629 | 0.1931 | 0.2078 | 0.1126 | 0.0831 | 0.0552 | 0.0607 | 0.0684 | 0.0676 | |
0.0992 | 0.0578 | 0.2089 | 0.2075 | 0.1281 | 0.0835 | 0.0332 | 0.0497 | 0.0702 | 0.0619 | |
0.0985 | 0.0634 | 0.1865 | 0.1920 | 0.1227 | 0.0894 | 0.0466 | 0.0585 | 0.0730 | 0.0694 | |
Priority | 4 | 8 | 2 | 1 | 3 | 5 | 10 | 9 | 6 | 7 |
MCDM Method | Sub-Criteria i = 1, 2, …, m | |||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | |
0.1991 | 0.1667 | 0.1273 | 0.1320 | 0.0810 | 0.0995 | 0.0810 | 0.1134 | |
0.2652 | 0.1620 | 0.1100 | 0.1144 | 0.0799 | 0.0897 | 0.0799 | 0.0989 | |
0.2561 | 0.1888 | 0.1278 | 0.1217 | 0.0539 | 0.0834 | 0.0564 | 0.1119 | |
0.2401 | 0.1725 | 0.1217 | 0.1227 | 0.0716 | 0.0909 | 0.0724 | 0.1081 | |
Priority | 1 | 2 | 4 | 3 | 8 | 6 | 7 | 5 |
MCDM Method | Sub-Criteria i = 1, 2, …, m | |||||
---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | |
0.2659 | 0.0992 | 0.2182 | 0.1548 | 0.0873 | 0.1746 | |
0.3388 | 0.0976 | 0.1986 | 0.1281 | 0.0929 | 0.1440 | |
0.3311 | 0.0904 | 0.2383 | 0.1227 | 0.0569 | 0.1606 | |
0.3119 | 0.0957 | 0.2184 | 0.1352 | 0.0790 | 0.1598 | |
Priority | 1 | 5 | 2 | 4 | 6 | 3 |
Main Criteria and Sub-Criteria | Maximum, Minimum Weight, and the Difference in Weights | Method | Average of Three Methods | ||
---|---|---|---|---|---|
ARTIW-L | ARTIW-N | AHP | |||
Main criteria | 0.1934 (D) | 0.2072 (D) | 0.2172 (D) | 0.2059 (D) | |
0.0625 (F) | 0.0856 (F) | 0.0530 (F) | 0.0670 (F) | ||
0.1309 | 0.1216 | 0.1642 | 0.1389 | ||
Sub-criteria for the main criterion A | 0.1875 (A1) | 0.1961 (A1) | 0.2107 (A1) | 0.1981 (A1) | |
0.0893 (A3) | 0.0980 (A3) | 0.0824 (A3) | 0.0899 (A3) | ||
0.0982 | 0.0981 | 0.1283 | 0.1082 | ||
Sub-criteria for the main criterion B | 0.1736 (B2) | 0.1881 (B2) | 0.2026 (B2) | 0.1881 (B2) | |
0.0671 (B5) | 0.0786 (B5) | 0.0545 (B5) | 0.0726 (B5) | ||
0.1065 | 0.1095 | 0.1481 | 0.1155 | ||
Sub-criteria for the main criterion C | 0.2301 (C1, C6) | 0.2426 (C1, C6) | 0.2915 (C1) | 0.2547 (C1) | |
0.1151 (C4, C5) | 0.1147 (C4, C5) | 0.0827 (C5) | 0.1042 (C5) | ||
0.1150 | 0.1279 | 0.2088 | 0.1505 | ||
Sub-criteria for the main criterion D | 0.2445 (D2, D3) | 0.2436 (D2, D3) | 0.3109 (D2) | 0.2663 (D2) | |
0.1055 (D5) | 0.1286 (D5) | 0.0787 (D5) | 0.1043 (D5) | ||
0.1390 | 0.1150 | 0.2322 | 0.1620 | ||
Sub-criteria for the main criterion E | 0.1606 (E4) | 0.2078 (E4) | 0.2089 (E3) | 0.1920 (E4) | |
0.0515 (E7) | 0.0552 (E7) | 0.0332 (E7) | 0.0466 (E7) | ||
0.1091 | 0.1526 | 0.1757 | 0.1454 | ||
Sub-criteria for the main criterion F | 0.1991 (F1) | 0.2652 (F1) | 0.2561 (F1) | 0.2401 (F1) | |
0.0810 (F5, F7) | 0.0799 (F5, F7) | 0.0539 (F5) | 0.0716 (F5) | ||
0.1181 | 0.1853 | 0.2022 | 0.1685 | ||
Sub-criteria for the main criterion G | 0.2659 (G1) | 0.3388 (G1) | 0.3311 (G1) | 0.3119 (G1) | |
0.0873 (G5) | 0.0929 (G5) | 0.0569 (G5) | 0.0790 (G5) | ||
0.1786 | 0.2459 | 0.2742 | 0.2329 |
Sub-Criterion | Local Priority | Global Priority | |||||
---|---|---|---|---|---|---|---|
A. Studies on and legal acts regulating electric vehicle (EV) deployment | A1 | 0.1981 | 1 | 0.02429 | 0.17001 | 0.02416 | 16 |
A2 | 0.1216 | 4 | 0.01491 | 0.10436 | 0.01483 | 31 | |
A3 | 0.0899 | 7 | 0.01102 | 0.07715 | 0.01096 | 42 | |
A4 | 0.1150 | 6 | 0.01410 | 0.09869 | 0.01402 | 33 | |
A5 | 0.1182 | 5 | 0.01449 | 0.10144 | 0.01442 | 32 | |
A6 | 0.1709 | 3 | 0.02095 | 0.14667 | 0.02084 | 21 | |
A7 | 0.1863 | 2 | 0.02284 | 0.15988 | 0.02272 | 19 | |
B. Technical and operational parameters for electric vehicles | B1 | 0.1245 | 5 | 0.02033 | 0.16265 | 0.02312 | 17 |
B2 | 0.1881 | 1 | 0.03072 | 0.24573 | 0.03492 | 6 | |
B3 | 0.1341 | 4 | 0.02190 | 0.17519 | 0.02490 | 15 | |
B4 | 0.1514 | 3 | 0.02472 | 0.19779 | 0.02811 | 11 | |
B5 | 0.0667 | 8 | 0.01089 | 0.08714 | 0.01238 | 39 | |
B6 | 0.0726 | 7 | 0.01186 | 0.09484 | 0.01348 | 35 | |
B7 | 0.0964 | 6 | 0.01574 | 0.12594 | 0.01790 | 24 | |
B8 | 0.1662 | 2 | 0.02714 | 0.21712 | 0.03086 | 7 | |
C. The action of the initiative subjects for EV deployment | C1 | 0.2547 | 1 | 0.03161 | 0.18965 | 0.02695 | 13 |
C2 | 0.1646 | 3 | 0.02043 | 0.12256 | 0.01742 | 26 | |
C3 | 0.1192 | 4 | 0.01479 | 0.08876 | 0.01261 | 37 | |
C4 | 0.1065 | 5 | 0.01322 | 0.07930 | 0.01127 | 40 | |
C5 | 0.1042 | 6 | 0.01293 | 0.07759 | 0.01103 | 41 | |
C6 | 0.2508 | 2 | 0.03112 | 0.18675 | 0.02654 | 14 | |
D. Development of public EV charging infrastructure | D1 | 0.1917 | 4 | 0.03947 | 0.19736 | 0.02805 | 12 |
D2 | 0.2663 | 1 | 0.05483 | 0.27416 | 0.03896 | 4 | |
D3 | 0.2442 | 2 | 0.05028 | 0.25140 | 0.03573 | 5 | |
D4 | 0.1935 | 3 | 0.03984 | 0.19921 | 0.02831 | 10 | |
D5 | 0.1043 | 5 | 0.02148 | 0.10738 | 0.01526 | 29 | |
E. Economic factors | E1 | 0.0985 | 4 | 0.01623 | 0.16233 | 0.02307 | 18 |
E2 | 0.0634 | 8 | 0.01045 | 0.10448 | 0.01485 | 30 | |
E3 | 0.1865 | 2 | 0.03074 | 0.30735 | 0.04368 | 2 | |
E4 | 0.1920 | 1 | 0.03164 | 0.31642 | 0.04497 | 1 | |
E5 | 0.1227 | 3 | 0.02022 | 0.20221 | 0.02874 | 8 | |
E6 | 0.0894 | 5 | 0.01473 | 0.14733 | 0.02094 | 20 | |
E7 | 0.0466 | 10 | 0.00768 | 0.07680 | 0.01091 | 43 | |
E8 | 0.0585 | 9 | 0.00964 | 0.09641 | 0.01370 | 34 | |
E9 | 0.0730 | 6 | 0.01203 | 0.12030 | 0.01710 | 27 | |
E10 | 0.0694 | 7 | 0.01144 | 0.11437 | 0.01625 | 28 | |
F. Social factors | F1 | 0.2401 | 1 | 0.01609 | 0.12870 | 0.01829 | 23 |
F2 | 0.1725 | 2 | 0.01156 | 0.09246 | 0.01314 | 36 | |
F3 | 0.1217 | 4 | 0.00815 | 0.06523 | 0.00927 | 46 | |
F4 | 0.1227 | 3 | 0.00822 | 0.06577 | 0.00935 | 45 | |
F5 | 0.0716 | 8 | 0.00480 | 0.03838 | 0.00545 | 50 | |
F6 | 0.0909 | 6 | 0.00609 | 0.04872 | 0.00692 | 48 | |
F7 | 0.0724 | 7 | 0.00485 | 0.03881 | 0.00552 | 49 | |
F8 | 0.1081 | 5 | 0.00724 | 0.05794 | 0.00823 | 47 | |
G. Ecological (environmental) factors | G1 | 0.3119 | 1 | 0.04750 | 0.28501 | 0.04051 | 3 |
G2 | 0.0957 | 5 | 0.01458 | 0.08745 | 0.01243 | 38 | |
G3 | 0.2184 | 2 | 0.03326 | 0.19957 | 0.02836 | 9 | |
G4 | 0.1352 | 4 | 0.02059 | 0.12354 | 0.01756 | 25 | |
G5 | 0.0790 | 6 | 0.01203 | 0.07219 | 0.01026 | 44 | |
G6 | 0.1598 | 3 | 0.02434 | 0.14603 | 0.02075 | 22 | |
Total | – | 7.0000 | – | – | 7.03652 | 1.00000 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivilevičius, H.; Žuraulis, V.; Bražiūnas, J. Expert Evaluation of the Significance of Criteria for Electric Vehicle Deployment: A Case Study of Lithuania. Smart Cities 2024, 7, 2208-2231. https://doi.org/10.3390/smartcities7040087
Sivilevičius H, Žuraulis V, Bražiūnas J. Expert Evaluation of the Significance of Criteria for Electric Vehicle Deployment: A Case Study of Lithuania. Smart Cities. 2024; 7(4):2208-2231. https://doi.org/10.3390/smartcities7040087
Chicago/Turabian StyleSivilevičius, Henrikas, Vidas Žuraulis, and Justas Bražiūnas. 2024. "Expert Evaluation of the Significance of Criteria for Electric Vehicle Deployment: A Case Study of Lithuania" Smart Cities 7, no. 4: 2208-2231. https://doi.org/10.3390/smartcities7040087