Self-Supervised Three-Dimensional Ocean Bottom Node Seismic Data Shear Wave Leakage Suppression Based on a Dual Encoder Network
Abstract
:1. Introduction
- For shear wave suppression in 3D OBN seismic data, this paper proposes a self-supervised method requiring only three-component geophone data. This method designs a U-shaped network with a dual encoder structure so that the two horizontal components are input through two encoders. This suppresses the two sources of horizontal leaked noise simultaneously to improve the computational efficiency.
- To enhance the extraction of low-dimensional features, the proposed method integrates an attention mechanism into the skip connection. This contains channel attention and spatial attention to better acquire features from both dimensions.
- To balance signal leakage and noise suppression, the local normalized cross-correlation regularization is incorporated into the basic MSE loss. This hybrid loss function not only ensures network stability but also mitigates the risk of over-fitting.
2. Methodology
2.1. Shear Wave Leakage Problem Formulation
2.2. Review of Adaptive Matching Subtraction
2.3. Deep Learning Method
2.4. Network Structure
2.5. Loss Function
3. Experiment
3.1. Evaluation Metrics
3.2. Synthetic Data Example
3.3. Field Data Example
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OBN | Ocean Bottom Node |
OBC | Ocean Bottom Cable |
CRGs | Common Receiver Gathers |
NMO | Normal-moveout Correction |
SVD | Singular Value Decomposition |
DNNs | Deep Neural Networks |
CBAM | Convolutional Block Attention Module |
CAM | Channel Attention Module |
SAM | Spatial Attention Module |
MLP | Multilayer Perceptron |
LNCC | Local Normalized Cross-correlation |
SSIM | Structural Similarity |
LS | Local Similarity |
References
- Wang, H.; Lin, J.; Dong, X.; Jiang, D. Signal recovery and noise suppression of the ocean-bottom cable p-component data based on improved dense convolutional network. Geophys. Prospect. 2024, 72, 1498–1521. [Google Scholar] [CrossRef]
- Brown, R.J. Acquisition footprints and seafloor coupling in multicomponent obc seismic data. Geophysics 2010, 75, Q11–Q20. [Google Scholar] [CrossRef]
- Alerini, M.; Traub, B.; Ravaut, C.; Duveneck, E. Prestack depth imaging of ocean-bottom node data. Geophysics 2009, 74, WCA57–WCA63. [Google Scholar] [CrossRef]
- Detomo, J.R.; Quadt, E.; Pirmez, C.; Mbah, R.; Olotu, S. Ocean bottom node seismic: Learnings from bonga, deepwater offshore nigeria. In Proceedings of the 82th Annual International Meeting, SEG, Expanded Abstracts, Las Vegas, NV, USA, 4–9 November 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Pacal, E.E. Seismic Imaging with Ocean-Bottom Nodes (obn): New Acquisition Designs and the Atlantis 4c obn Survey. Ph.D. Dissertation, University of Houston, Houston, TX, USA, 2012. [Google Scholar]
- Zhang, Y.; Liu, Y.; Yi, J.; Liu, X. Fast least-squares reverse time migration of obn down-going multiples. Front. Earth Sci. 2021, 9, 730476. [Google Scholar] [CrossRef]
- Alghamdi, A.; Mingzhong, H.; Aldeghaither, S.; Khan, A.; Alzahrani, S.; Tsingas, C.; Donliang, Z.; Diallo, M.S. Processing challenges and technologies of ocean-bottom node survey. In Proceedings of the 88th Annual International Meeting, SEG, Expanded Abstracts, Anaheim, CA, USA, 14–19 October 2012; pp. 4060–4064. [Google Scholar] [CrossRef]
- Asor, V.E.; Nwankwo, C.N. Application of coherent noise attenuation to 4-c ocean bottom cable seismic data from the niger delta. Aust. J. Basic Appl. Sci. 2010, 4, 4985–4994. Available online: https://api.semanticscholar.org/CorpusID:110645659 (accessed on 17 January 2025).
- Al-anboori, A.; Baan, M.v.; Kendall, J.M. Approximate separation of pure-mode and converted waves in 3-c reflection seismics by τ-p transform. Geophysics 2005, 70, V81–V86. [Google Scholar] [CrossRef]
- Jeong, W.; Tsingas, C.; Almubarak, M.S. Shear noise suppression for seafloor vertical geophone using robust reduced-rank filtering. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8028105. [Google Scholar] [CrossRef]
- Paffenholz, J.; Docherty, P.; Shurtleff, R.N.; Hays, D. Shear wave noise on obs vz data - part ii elastic modeling of scatterers in the seabed. In Proceedings of the 68th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Vienna, Austria, 12–15 June 2006; Volume A072. [Google Scholar] [CrossRef]
- Sun, J.; Jafargandomi, A.; Holden, J. Deep learning-based vz-noise attenuation for obs data. In Proceedings of the Third International Meeting for Applied Geoscience & Energy Expanded Abstracts, Houston, TX, USA, 28 August–1 September 2023. [Google Scholar] [CrossRef]
- Wang, Y.; Bale, R.; Grion, S. A new approach to remove the water column effect from 4-d ocean bottom data. In Proceedings of the 80th Annual International Meeting, SEG, Expanded Abstracts, Denver, CO, USA, 17–22 October 2010; pp. 4205–4209. [Google Scholar] [CrossRef]
- Grion, S. Obs wavefield separation and its applications. In Proceedings of the 9th Biennial International Conference Exposition on Petroleum Geophysics, Hyderabad, India, 16–18 February 2012; Available online: https://api.semanticscholar.org/CorpusID:199531273 (accessed on 17 January 2025).
- Siyou, T.; Ming, C.; Linwei, L.; Linfei, W.; Huaishan, L. A new method of wavefield separation: Application to obs data from south china sea. In Proceedings of the SEG 2017 Workshop: OBN/OBC Technologies and Applications, Beijing, China, 4–6 September 2017; pp. 31–34. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Langston, C.A. Adaptive noise estimation and suppression for improving microseismic event detection. J. Appl. Geophys. 2016, 132, 116–124. [Google Scholar] [CrossRef]
- Nie, P.; Zhang, L.; Li, Y.; Yang, B.; Luan, X. Using the directional derivative trace transform for seismic wavefield separation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3289–3298. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Chen, W.; Huang, G. A robust method for random noise suppression based on the radon transform. J. Appl. Geophys. 2021, 184, 104183. [Google Scholar] [CrossRef]
- Gaci, S. The use of wavelet-based denoising techniques to enhance the first-arrival picking on seismic traces. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4558–4563. [Google Scholar] [CrossRef]
- Bekara, M.; van der Baan, M. Random and coherent noise attenuation by empirical mode decomposition. Geophysics 2009, 74, V89–V98. [Google Scholar] [CrossRef]
- Chen, W.; Xie, J.; Zu, S.; Gan, S.; Chen, Y. Multiple-reflection noise attenuation using adaptive randomized-order empirical mode decomposition. IEEE Geosci. Remote Sens. Lett. 2016, 14, 18–22. [Google Scholar] [CrossRef]
- Lin, P.; Peng, S.; Xiang, Y.; Li, C.; Cui, X.; Zhang, W. Structure-oriented cur low-rank approximation for random noise attenuation of seismic data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4504713. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B. Streaming orthogonal prediction filter in the t-x domain for random noise attenuation. Geophysics 2018, 83, F41–F48. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Y.; Liu, C. Nonstationary pattern-based signal–noise separation using adaptive prediction-error filter. J. Geophys. Eng. 2022, 19, 14–27. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Z. Noniterative f-xy streaming prediction filtering for random noise attenuation on seismic data. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5904609. [Google Scholar]
- Shatilo, A.; Duren, R.; Rape, T. Effect of noise suppression on quality of 2c obc image. In Proceedings of the 74th Annual International Meeting, SEG, Expanded Abstracts, Denver, CO, USA, 10–15 October 2004; pp. 917–920. [Google Scholar] [CrossRef]
- Craft, K.L.; Paffenholz, J. Geophone noise attenuation and wavefield separation using a multidimensional decomposition technique. In Proceedings of the 77th Annual International Meeting, SEG, Expanded Abstracts, San Antonio, TX, USA, 23–26 September 2007; pp. 2630–2634. [Google Scholar] [CrossRef]
- Yu, Z.; Kumar, C.; Ahmed, I. Ocean bottom seismic noise attenuation using local attribute matching filter. In Proceedings of the 81th Annual International Meeting, SEG, Expanded Abstracts, San Antonio, TX, USA, 18–23 September 2011; pp. 3586–3590. [Google Scholar] [CrossRef]
- Peng, C.; Huang, R.; Asmerom, B. Shear noise attenuation and pz matching for obn data with a new scheme of complex wavelet transform. In Proceedings of the 83th Annual International Meeting, SEG, Expanded Abstracts, Houston, TX, USA, 22–27 September 2013; pp. 4251–4255. [Google Scholar] [CrossRef]
- Poole, G.; Casasanta, L.; Grion, S. Sparse τ-p z-noise attenuation for ocean-bottom data. In Proceedings of the 82th Annual International Meeting, SEG, Expanded Abstracts, Las Vegas, NV, USA, 4–9 November 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Jiang, X.; Lin, J.; Ye, F.; Zheng, F. Separation of p–p and p–sv wavefields by high resolution parabolic radon transform. J. Appl. Geophys. 2015, 119, 192–201. [Google Scholar] [CrossRef]
- Perrone, F.; Grion, S. Z-noise attenuation using gaussian mixtures models and unsupervised learning. In Proceedings of the 81st Annual International Conference and Exhibition, EAGE, Extended Abstracts, London, UK, 3–6 June 2019; Volume 2019, pp. 1–5. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, C.; Degel, T.; Liu, Z. Vz noise attenuation using dual-tree complex wavelet transform. In Proceedings of the 90th Annual International Meeting, SEG, Expanded Abstracts, Online, 11–16 October 2020; pp. 1830–1834. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Y.; Liu, Z.; Sheng, J.; Camarda, E. Shear wave noise attenuation and wavefield separation in curvelet domain. In Proceedings of the 90th Annual International Meeting, SEG, Expanded Abstracts, Online, 11–16 October 2020; pp. 1805–1809. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, C.; Seher, T.; Hawke, M.; Cho, E. Vz denoise and p/z matching in 3d curvelet domain. In Proceedings of the Second International Meeting for Applied Geoscience & Energy, Houston, TX, USA, 28 August–1 September 2022; pp. 2862–2866. [Google Scholar] [CrossRef]
- Roodaki, A.; Bouquard, G.; Bouhdiche, O.; Sternfels, R.; Rollet, A.; Lafram, A. Svd-based hydrophone driven shear noise attenuation for shallow water obs. In Proceedings of the 78th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Vienna, Austria, 29–30 May 2016; Volume 2016, pp. 1–5. [Google Scholar] [CrossRef]
- Hampson, G.; Kumar, A.; Rayment, T. Vz denoise using joint sparsity recovery. In Proceedings of the First International Meeting for Applied Geoscience & Energy Expanded Abstracts, Denver, CO, USA, 26 September– 1 October 2021; pp. 2804–2808. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R. S-wave suppression in the vertical component of 4-c obc data. In Proceedings of the 87th Annual International Meeting, SEG, Expanded Abstracts, Houston, TX, USA, 24–29 September 2017; pp. 2518–2522. [Google Scholar] [CrossRef]
- Jeong, W.; Tsingas, C. A de-noising methodology for multi-component seafloor nodal geophones. In Proceedings of the 81th Annual International Conference and Exhibition, EAGE, Extended Abstracts, London, UK, 3–6 June 2019. [Google Scholar] [CrossRef]
- Jeong, W.; Tsingas, C.; Mubarak, M. A denoising workflow of seafloor vertical geophone using 4-c data. In Proceedings of the 82th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Amsterdam, The Netherlands, 8–11 June 2020. [Google Scholar]
- Xu, Z.; Luo, Y.; Wu, B.; Meng, D. S2s-wtv: Seismic data noise attenuation using weighted total variation regularized self-supervised learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, Y.; Wu, B.; Meng, D.; Chen, Y. Deep nonlocal regularizer: A self-supervised learning method for 3-d seismic denoising. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5921517. [Google Scholar] [CrossRef]
- Wang, J.; Wu, B.; Yang, H.; Li, B. Re-visible blind block network: An unsupervised seismic data random noise attenuation method. Geophys. Prospect. 2024, 72, 2739–2760. [Google Scholar] [CrossRef]
- Lin, H.; Xu, J.; Xing, L.; Li, Q.; Liu, H. Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder. Geophys. Prospect. 2024, 72, 1428–1441. [Google Scholar] [CrossRef]
- Tao, L.; Ren, H.; Ye, Y.; Jiang, J. Seismic surface-related multiples suppression based on sagan. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3006605. [Google Scholar] [CrossRef]
- Yang, L.; Fomel, S.; Wang, S.; Chen, X.; Chen, Y. Deep learning with soft attention mechanism for small-scale ground roll attenuation. Geophysics 2024, 89, WA179–WA193. [Google Scholar] [CrossRef]
- Yang, L.; Fomel, S.; Wang, S.; Chen, X.; Sun, Y.; Chen, Y. Interpretable unsupervised learning framework for multi-dimensional erratic and random noise attenuation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5911820. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, B.; Wu, W.; Ma, D. Fault detection via 2.5d transformer u-net with seismic data pre-processing. Remote Sens. 2023, 15, 1039. [Google Scholar] [CrossRef]
- Ning, C.; Wu, B.; Wu, B. Transformer and convolutional hybrid neural network for seismic impedance inversion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4436–4449. [Google Scholar] [CrossRef]
- Yang, L.; Fomel, S.; Wang, S.; Chen, X.; Saad, O.M.; Chen, Y. Salt3dnet: A self-supervised learning framework for 3d salt segmentation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5913115. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 2020, 11, 3952. [Google Scholar] [CrossRef]
- Saad, O.M.; Chen, Y.; Savvaidis, A.; Fomel, S.; Chen, Y. Real-time earthquake detection and magnitude estimation using vision transformer. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023657. [Google Scholar] [CrossRef]
- Chen, Y.; Savvaidis, A.; Chen, Y.; Saad, O.M.; Fomel, S. Enhancing earthquake detection from distributed acoustic sensing data by coherency measure and moving-rank-reduction filtering. Geophysics 2023, 88, WC13–WC23. [Google Scholar] [CrossRef]
- Wang, S.; Song, P.; Tan, J.; He, B.; Xia, D.; Wang, Q.; Du, G. Deep learning-based attenuation for shear-wave leakage from ocean-bottom node data. Geophysics 2023, 88, V127–V137. [Google Scholar] [CrossRef]
- Saad, O.M.; Oboué, Y.A.S.I.; Bai, M.; Samy, L.; Yang, L.; Chen, Y. Self-attention deep image prior network for unsupervised 3-d seismic data enhancement. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5907014. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.; Wu, B.; Gao, J. Self-supervised shear wave noise adaptive subtraction in ocean bottom node data. Appl. Sci. 2024, 14, 3488. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Jia, X.; Bartlett, J.; Zhang, T.; Lu, W.; Qiu, Z.; Duan, J. U-net vs. transformer: Is u-net outdated in medical image registration? In International Workshop on Machine Learning in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2022; pp. 151–160. [Google Scholar]
- Wang, K.; Hu, T.; Zhao, B.; Wang, S. Random noise attenuation using an unsupervised deep neural network method based on local orthogonalization and ensemble learning. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5913511. [Google Scholar] [CrossRef]
- Wang, K.; Hu, T.; Zhao, B.; Wang, S. Surface-related multiple attenuation based on a self-supervised deep neural network with local wavefield characteristics. Geophysics 2023, 88, V387–V402. [Google Scholar] [CrossRef]
- Wang, K.; Hu, T.; Zhao, B. Seismic internal multiple attenuation based on self-supervised deep learning with a local orthogonalization constraint. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5917609. [Google Scholar] [CrossRef]
- Fomel, S. Adaptive multiple subtraction using regularized nonstationary regression. Geophysics 2009, 74, V25–V33. [Google Scholar] [CrossRef]
- Tihonov, A.N. Solution of incorrectly formulated problems and the regularization method. Sov. Math Dokl 1963, 5, 1035–1038. [Google Scholar]
- Fomel, S. Shaping regularization in geophysical-estimation problems. Geophysics 2007, 72, R29–R36. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Chen, Y.; Fomel, S. Random noise attenuation using local signal-and-noise orthogonalization. Geophysics 2015, 80, WD1–WD9. [Google Scholar] [CrossRef]
Metric | Observed | Unet | Unet-LNCC | Unet-CBAM | Proposed Method | |
---|---|---|---|---|---|---|
3D data | S/N (dB) SSIM | −1.14 0.578 | 15.73 0.968 | 15.75 0.966 | 16.97 0.977 | 17.41 0.980 |
Crossline | S/N (dB) SSIM | −0.71 0.426 | 16.27 0.894 | 16.34 0.887 | 18.14 0.935 | 18.16 0.932 |
Inline | S/N (dB) SSIM | −4.13 0.371 | 13.34 0.834 | 13.49 0.821 | 14.85 0.886 | 15.18 0.887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Chen, Z.; Wu, B.; Chen, L. Self-Supervised Three-Dimensional Ocean Bottom Node Seismic Data Shear Wave Leakage Suppression Based on a Dual Encoder Network. Sensors 2025, 25, 682. https://doi.org/10.3390/s25030682
Zhu Z, Chen Z, Wu B, Chen L. Self-Supervised Three-Dimensional Ocean Bottom Node Seismic Data Shear Wave Leakage Suppression Based on a Dual Encoder Network. Sensors. 2025; 25(3):682. https://doi.org/10.3390/s25030682
Chicago/Turabian StyleZhu, Zhaolin, Zhihao Chen, Bangyu Wu, and Lin Chen. 2025. "Self-Supervised Three-Dimensional Ocean Bottom Node Seismic Data Shear Wave Leakage Suppression Based on a Dual Encoder Network" Sensors 25, no. 3: 682. https://doi.org/10.3390/s25030682
APA StyleZhu, Z., Chen, Z., Wu, B., & Chen, L. (2025). Self-Supervised Three-Dimensional Ocean Bottom Node Seismic Data Shear Wave Leakage Suppression Based on a Dual Encoder Network. Sensors, 25(3), 682. https://doi.org/10.3390/s25030682