Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Instrument
2.2. Driving Visual Index Selection
2.2.1. Pupil Area Change
2.2.2. Fixation Time
2.2.3. Saccade Time
2.2.4. Saccade Angle
2.2.5. Saccade Speed
2.3. Experimental Road
2.4. Driver Selection
2.5. Definition and Measure of Green Vision
- Convert RGB images to HSV color space.
- Count the number of green pixels. In the HSV color space, green is located at a point where the hue is about 60 degrees. Therefore, you can set a hue threshold range, this article set 10 to 60 degrees, to determine the green range of pixels.
- Calculate the ratio of green pixels.
- The boundary of green in the CIE 1931 (XYZ) color space is shown in Figure 2.
2.6. Correlation Analysis Between Green Vision Rate and Driver Vision
2.7. Green Vision Zone Division
3. Results
3.1. The Relationship Between Landscape Greenness and Visual Index
3.1.1. Pupil Area Change
3.1.2. Fixation Time
3.1.3. Saccade Characteristic Analysis
4. Discussion
4.1. Analysis of Green Vision Rate on Driving Visual Load
4.2. Comparison with Previous Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, I.U.; Ahmed, M.M. Investigating the Temporal Instability in Injury Severity Outcomes of Clear and Adverse Weather Crashes on Rural Mountainous Highways. Transp. Res. Rec. 2022, 2676, 107–132. [Google Scholar] [CrossRef]
- Reimer, C.J.; Willis, M.D.; Wesselink, A.K.; Hystad, P.; Campbell, E.J.; Hatch, E.E.; Kirwa, K.; Gradus, J.L.; Vinceti, M.; Wise, L.A.; et al. Exposure to Residential Greenness, Perceived Stress, and Depressive Symptoms in a North American Preconception Cohort. Environ. Res. 2024, 260, 119438. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Jiangxu, J.; Mi, W.; Jin, S.; Gang, L. Effect of panoramic green vision rate on human pleasure in virtual reality environment based on EEG experiment. Landsc. Archit. 2002, 10, 36–51. [Google Scholar]
- Son, K.; Song, J.; Um, S.; Lee, J.; Kwack, H. Effects of visual recognition of green plants on the changes of EEG in patients with schizophrenia. Acta Hortic. 2004, 639, 193–199. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Q. The Effects of Plant Colors on Alleviating Anxiety in College Students. Asia-Pac. Integr. Res. Exch. Pap. 2024, 10, 345–358. [Google Scholar] [CrossRef]
- Choi, J.Y.; Park, S.A.; Jung, S.J.; Lee, J.Y.; Son, K.C.; An, Y.J.; Lee, S.W. Physiological and psychological responses of humans to the index of greenness of an interior space. Complement. Ther. Med. 2016, 28, 37–43. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Hao, L.; Yueyang, Z. Influence of Landscape Design on Driving Behavior Based on Slope Illusion. J. Adv. Transp. 2022, 2022, 6407145. [Google Scholar]
- Linghan, L.; Hanyan, Q.; Yimeng, M.; Kang, W.; Hongxin, Q. Restorative benefits of urban green space: Physiological, psychological restoration and eye movement analysis. J. Environ. Manag. 2022, 301, 113930. [Google Scholar]
- Jiang, B.; He, J.; Chen, J.; Larsen, L. Moderate is optimal: A simulated driving experiment reveals freeway landscape matters for driving performance. Urban For. Urban Green. 2021, 58, 126976. [Google Scholar] [CrossRef]
- Meng, Y.; Cai, H.; Chen, L.; Liu, T.; Zheng, S.; Zheng, B.; Qing, G. Research on driving visual comfort of two-lane mountainous road based on traffic safety evaluation. Eng. Rep. 2022, 5, e12561. [Google Scholar] [CrossRef]
- Zihui, G.; Weiwei, G.; Jiyuan, T. Drivers to take over the eye movement characteristics of self-driving vehicles and behavior analysis. Chin. J. Sci. 2022, 32, 65–71. [Google Scholar]
- Zhifa, Y.; Yulin, S.; Xin, G. Simulation of the impact of Mountain curve landscape on traffic safety. J. Southwest Jiaotong Univ. 2011, 46, 651–656. [Google Scholar]
- Haixiao, W.; Xu, D.; Zhen, L.; Mingxing, G. Driver distraction load assessment based on the characteristics of gaze Behavior. J. South China Norm. Univ. 2022, 54, 7–17. [Google Scholar]
- Wei, W.; Fu, X.; Zhong, S.; Ge, H. Driver’s mental workload classification using physiological, traffic flow and environmental factors. Transp. Res. Part F Psychol. Behav. 2023, 94, 151–169. [Google Scholar] [CrossRef]
- Gavas, R.; Chatterjee, D.; Sinha, A. Estimation of cognitive load based on the pupil size dilation. In Proceedings of the IEEE 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; IEEE: New York, NY, USA, 2017; pp. 1499–1504. [Google Scholar]
- Mengmeng, D.; Boming, T.; Xuhui, H.; Baike, H.; Tangzhi, L. Driver’s visual load at tunnel entrance and exit of sections with high ratio of tunnels. J. Transp. Syst. Eng. Inf. Technol. 2018, 18, 113–119. [Google Scholar]
- Di Stasi, L.L.; Fernandes, M.A.; Angioi, F.; Prat, C.; Sodnik, J.; Diaz-Piedra, C. Supervising is not the same as driving: The influence of the interaction between driving modality and time-on-driving on stationary gaze entropy during long, monotonous drive. J. Vis. 2023, 23, 5310. [Google Scholar] [CrossRef]
- Shen, D.; Du, Z.; Zhangxing, H. Experimental study on the influence of sunshade at urban tunnel entrance on driver’s visual load. Mod. Tunn. Technol. 2024, 61, 60–69. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, F.; Zhu, J.; Wang, C.; Cheng, J.; Zhang, Y.; Bo, W.; Zhang, P. Research on drivers’ hazard perception in plateau environment based on visual characteristics. Accid. Anal. Prev. 2022, 166, 106540. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Du, Z.; Wang, S. Drivers’ saccade characteristics in curves of extra-long urban underwater tunnels. Transp. Res. Rec. 2020, 2674, 102–111. [Google Scholar] [CrossRef]
- Chen, Y.; Du, Z.; Xu, F.; Mei, J.; Jiao, Z. Evaluation of driving load in urban underwater Long tunnel based on evasive behavior. Highway 2023, 68, 206–214. [Google Scholar]
- Liang, B.; Niu, J.; Hongjie, Z. Tunnel entrance driving based on saccadic path speed Analysis of comfort. J. Undergr. Space Eng. 2024, 20, 657–666+700. [Google Scholar] [CrossRef]
- Yudhana, A.; Fahmi, M. SVM-CNN Hybrid Classification for Waste Image Using Morphology and HSV Color Model Image Processing. Trait. Du Signal 2023, 40, 1763–1769. [Google Scholar]
- Sõukand, R.; Kalle, R. Plant as Object within Herbal Landscape: Different Kinds of Perception. Biosemiotics 2010, 3, 299–313. [Google Scholar] [CrossRef]
- Liang, B.; Qin, C.; Niu, J.A.; Xiao, J.; Wen, S. Psychological Load of Drivers in Entrance Zone of Road Tunnel Based on TOPSIS Improved Factor Analysis Method. Transp. Res. Rec. 2024, 2678, 163–177. [Google Scholar] [CrossRef]
- Haijing, H. Research on Lane Change Intention Recognition Method of Expressway Drivers. Ph.D. Thesis, Jilin University, Changchun, China, 2013. [Google Scholar]
- Bingkui, J. Research on Driving Behavior Prediction Method Based on Driver Visual Characteristics. Ph.D. Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
Gender | Age | Years of Driving | ||||
---|---|---|---|---|---|---|
Under 24 Years of Age | 24–40 Years Old | Over 40 Years Old | 3 to 5 Years | 5 to 10 Years | Over 10 Years | |
Male | 4 | 7 | 3 | 7 | 4 | 3 |
Female | 2 | 2 | 2 | 3 | 2 | 1 |
Total | 6 | 9 | 5 | 10 | 6 | 4 |
20 | 20 |
Methods of Measurement | Original Figure | Barometer | Measurements |
---|---|---|---|
HSV color space computing image | 11.36% | ||
43.69% | |||
49.99% | |||
38.30% | |||
38.75% | |||
42.80% |
Scene | GVI% | Scene | GVI% |
---|---|---|---|
1 | 11.36 | 16 | 21.86 |
2 | 16.79 | 17 | 39.19 |
3 | 43.69 | 18 | 48.65 |
4 | 49.99 | 19 | 32.07 |
5 | 24.70 | 20 | 36.19 |
6 | 38.75 | 21 | 39.47 |
7 | 42.80 | 22 | 20.66 |
8 | 30.43 | 23 | 35.88 |
9 | 24.69 | 24 | 14.07 |
10 | 20.45 | 25 | 39.35 |
11 | 40.18 | 26 | 22.11 |
12 | 33.78 | 27 | 26.84 |
13 | 38.22 | 28 | 27.90 |
14 | 17.61 | 29 | 42.28 |
15 | 13.65 | 30 | 42.30 |
Driving Vision Index | Green View Index | |||
---|---|---|---|---|
10~20% | 20~30% | 30~40% | 40~50% | |
The pupil area average (mm2) | 21.97 | 18.58 | 12.84 | 8.39 |
Driving Vision Index | Green View Index | |||
---|---|---|---|---|
10~20% | 20~30% | 30~40% | 40~50% | |
Average fixation time (ms) | 1989.44 | 1233.25 | 675.38 | 405.36 |
Driving Vision Index | Green View Index | |||
---|---|---|---|---|
10~20% | 20~30% | 30~40% | 40~50% | |
Average saccade time (ms) | 40.22 | 44.13 | 50.84 | 62.96 |
Average saccade angle (°) | 4.33 | 5.96 | 9.13 | 13.70 |
Average saccade speed (°/ms) | 0.11 | 0.14 | 0.18 | 0.22 |
Normalized Variable | Fixation Time | Pupil Area | Saccade Time | Saccade Angle | Saccade Speed | |
---|---|---|---|---|---|---|
Correlation coefficient (r) | Fixation time | 1.000 | 0.776 | −0.742 | −0.810 | −0.754 |
Pupil area | 0.776 | 1.000 | −0.710 | −0.756 | −0.684 | |
Saccade time | −0.742 | −0.710 | 1.000 | 0.853 | 0.613 | |
Saccade angle | −0.810 | −0.756 | 0.853 | 1.000 | 0.930 | |
Saccade speed | −0.754 | −0.684 | 0.613 | 0.930 | 1.000 | |
Significance Double tail | Fixation time | 0.000 | 0.000 | 0.000 | 0.000 | |
Pupil area | 0.000 | 0.000 | 0.000 | 0.000 | ||
Saccade time | 0.000 | 0.000 | 0.000 | 0.000 | ||
Saccade angle | 0.000 | 0.000 | 0.000 | 0.000 | ||
Saccade speed | 0.000 | 0.000 | 0.000 | 0.000 |
KMO Sample Appropriateness Measure | 0.638 | |
---|---|---|
Bartelett sphericity test | Approximate chi-square value | 582.834 |
Dof | 10 | |
Sig. | 0.000 |
Normalized Variable | Initial | Withdraw |
---|---|---|
Z-socre (Fixation time) | 1.000 | 0.853 |
Z-socre (Pupil area) | 1.000 | 0.947 |
Z-socre (Saccade time) | 1.000 | 0.999 |
Z-socre (Saccade angle) | 1.000 | 0.992 |
Z-socre (Saccade speed) | 1.000 | 0.995 |
Element | Initial Eigenvalue | Extract the Sum of Squared Loads | Rotating Load Sum of Squares | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Variance Percentage | Grand Total% | Total | Variance Percentage | Grand Total% | Total | Variance Percentage | Grand Total% | |
1 | 4.056 | 81.122 | 81.122 | 4.056 | 81.122 | 81.122 | 1.797 | 35.932 | 35.932 |
2 | 0.047 | 8.137 | 89.259 | 0.407 | 8.137 | 89.259 | 1.581 | 31.624 | 67.555 |
3 | 0.323 | 6.462 | 95.721 | 0.323 | 6.462 | 95.721 | 1.408 | 28.165 | 95.721 |
4 | 0.210 | 4.191 | 99.912 | ||||||
5 | 0.004 | 0.088 | 100.000 |
Normalized Variable | Common Factor (Principal Component 1) |
---|---|
Z-socre (Fixation time) | 0.967 |
Z-socre (Pupil area) | 0.907 |
Z-socre (Saccade time) | 0.887 |
Z-socre (Saccade angle) | 0.870 |
Z-socre (Saccade speed) | 0.869 |
Normalized Variable | Common Factor 1 | Common Factor 2 | Common Factor 3 |
---|---|---|---|
Z-socre (Fixation time) | 0.903 | 0.353 | 0.236 |
Z-socre (Pupil area) | 0.736 | 0.368 | 0.561 |
Z-socre (Saccade time) | 0.323 | 0.858 | 0.326 |
Z-socre (Saccade angle) | 0.494 | 0.667 | 0.405 |
Z-socre (Saccade speed) | 0.302 | 0.374 | 0.876 |
Normalized Variable | Common Factor 1 | Common Factor 2 | Common Factor 3 |
---|---|---|---|
Z-socre (Fixation time) | 0.033 | 0.555 | 0.144 |
Z-socre (Pupil area) | 0.420 | 1.179 | 0.389 |
Z-socre (Saccade time) | −0.420 | 0.359 | 1.276 |
Z-socre (Saccade angle) | −0.499 | 0.412 | 0.315 |
Z-socre (Saccade speed) | 1.009 | 0.271 | −0.464 |
Results of Standardized Processing | |||||
---|---|---|---|---|---|
Green View Index | |||||
10~20% | 1.412 | 1.093 | 0.955 | 1.048 | 1.052 |
20~30% | 0.243 | 0.541 | 0.554 | 0.613 | 0.509 |
30~40% | −0.619 | −0.659 | −0.133 | −0.218 | −0.403 |
40~50% | −1.036 | −0.975 | −1.376 | −1.443 | −1.158 |
Visual Index | |||||||
---|---|---|---|---|---|---|---|
Green View Index | Fixation Time (ms) | Pupil Area (mm2) | Saccade Time (ms) | Saccade Angle (°) | Saccade Speed (°/ms) | Visual Load Evaluation Value | Visual Load Ranking |
10~20% | 1989.44 | 22.22 | 40.22 | 4.33 | 0.11 | 0.914 | 4 |
20~30% | 1233.25 | 20.13 | 44.13 | 5.96 | 0.14 | 0.720 | 3 |
30~40% | 675.38 | 15.24 | 50.84 | 9.13 | 0.18 | 0.405 | 2 |
40~50% | 405.36 | 10.04 | 62.96 | 13.70 | 0.22 | 0.139 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, J.; Jiang, H. Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis. Sensors 2025, 25, 335. https://doi.org/10.3390/s25020335
Li H, Yang J, Jiang H. Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis. Sensors. 2025; 25(2):335. https://doi.org/10.3390/s25020335
Chicago/Turabian StyleLi, Hao, Jiabao Yang, and Heng Jiang. 2025. "Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis" Sensors 25, no. 2: 335. https://doi.org/10.3390/s25020335
APA StyleLi, H., Yang, J., & Jiang, H. (2025). Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis. Sensors, 25(2), 335. https://doi.org/10.3390/s25020335