Validity and Concordance of a Linear Position Transducer (Vitruve) for Measuring Movement Velocity during Resistance Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Testing Procedures
2.4. Progressive Loading Tests in the BP and SQ Exercises
2.5. Measurement Equipment and Data Acquisition
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- For the BP exercise, VT1 and VT2 showed a high degree of agreement and concordance with TF (reference criterion) for velocities lower than 0.70 m·s−1 for both MPV and PV variables. When bar velocities were greater than 0.70 m·s−1, the degree of agreement decreased progressively, mainly for the PV variable.
- For the BP exercise, the magnitude of error (for SEE or BIAS) was moderate (~6–7% 1RM) for the MPV, whereas for the PV variable, the magnitude of error was unacceptable (~15–20% 1RM), mainly for velocities >0.70 m·s−1.
- For the SQ exercise, the degree of agreement between VT devices and TF for the MPV variable increased as the velocity range decreased, being acceptable for velocities lower than 1.00 m·s−1, whereas for the PV variable, the agreement and concordance were moderate to low, even for the low velocity ranges analyzed.
- For the SQ exercise, the magnitude of error (for SEE or BIAS) was moderate (~6–7% 1RM) for MPV at velocity ranges lower than 1.25 m·s−1, whereas at velocities greater than 1.25 m·s−1, the magnitude of error was unacceptable (~10–15% 1RM). For the PV variable, the magnitude of error was unacceptable (>10% 1RM) for all velocity ranges analyzed.
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L.; Ribas-Serna, J.; Rodriguez-Rosell, D. Toward a New Paradigm in Resistance Training by Means of Velocity Monitoring: A Critical and Challenging Narrative. Sports Med. Open 2022, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Sanchez-Medina, L.; Ribas-Serna, J.; Gonzalez-Badillo, J.J. Effect of velocity loss during squat training on neuromuscular performance. Scand. J. Med. Sci. Sports 2021, 31, 1621–1635. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.R.; Duthie, G.M.; Thornton, H.R.; Dascombe, B.J. Training Monitoring for Resistance Exercise: Theory and Applications. Sports Med. 2016, 46, 687–698. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J.; Perez, C.E.; Pallares, J.G. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Sanchez-Moreno, M.; Rodriguez-Rosell, D.; Pareja-Blanco, F.; Mora-Custodio, R.; Gonzalez-Badillo, J.J. Movement Velocity as Indicator of Relative Intensity and Level of Effort Attained During the Set in Pull-Up Exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1378–1384. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Rodriguez-Rosell, D. Velocity Loss as a Variable for Monitoring Resistance Exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Sanchez-Medina, L.; Mora-Custodio, R.; Gonzalez-Badillo, J.J. Relationship Between Velocity Loss and Repetitions in Reserve in the Bench Press and Back Squat Exercises. J. Strength Cond. Res. 2020, 34, 2537–2547. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Pareja-Blanco, F. Short-term Recovery Following Resistance Exercise Leading or not to Failure. Int. J. Sports Med. 2016, 37, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Aagaard, P.; Sanchez-Medina, L.; Ribas-Serna, J.; Mora-Custodio, R.; Otero-Esquina, C.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Time Course of Recovery from Resistance Exercise with Different Set Configurations. J. Strength Cond. Res. 2020, 34, 2867–2876. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas-Serna, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Courel-Ibanez, J.; Martinez-Cava, A.; Moran-Navarro, R.; Escribano-Penas, P.; Chavarren-Cabrero, J.; Gonzalez-Badillo, J.J.; Pallares, J.G. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann. Biomed. Eng. 2019, 47, 1523–1538. [Google Scholar] [CrossRef]
- Orange, S.T.; Metcalfe, J.W.; Liefeith, A.; Marshall, P.; Madden, L.A.; Fewster, C.R.; Vince, R.V. Validity and Reliability of a Wearable Inertial Sensor to Measure Velocity and Power in the Back Squat and Bench Press. J. Strength Cond. Res. 2019, 33, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernandez, C.; Kuzdub, M.; Poveda-Ortiz, P.; Campo-Vecino, J.D. Validity and Reliability of the PUSH Wearable Device to Measure Movement Velocity During the Back Squat Exercise. J. Strength Cond. Res. 2016, 30, 1968–1974. [Google Scholar] [CrossRef]
- Martinez-Cava, A.; Hernandez-Belmonte, A.; Courel-Ibanez, J.; Moran-Navarro, R.; Gonzalez-Badillo, J.J.; Pallares, J.G. Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS ONE 2020, 15, e0232465. [Google Scholar] [CrossRef]
- Perez-Castilla, A.; Piepoli, A.; Delgado-Garcia, G.; Garrido-Blanca, G.; Garcia-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Akyildiz, Z.; Pino-Ortega, J.; Rico-Gonzalez, M. Validity and Reliability of the Inertial Measurement Unit for Barbell Velocity Assessments: A Systematic Review. Sensors 2021, 21, 2511. [Google Scholar] [CrossRef]
- Rojas-Jaramillo, A.; Leon-Sanchez, G.; Calvo-Lluch, A.; Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D. Comparison of 10% vs. 30% Velocity Loss during Squat Training with Low Loads on Strength and Sport-Specific Performance in Young Soccer Players. Sports 2024, 12, 43. [Google Scholar] [CrossRef]
- Garnacho-Castano, M.V.; Lopez-Lastra, S.; Mate-Munoz, J.L. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 2015, 14, 128–136. [Google Scholar] [PubMed]
- Suchomel, T.J.; Techmanski, B.S.; Kissick, C.R.; Comfort, P. Reliability, Validity, and Comparison of Barbell Velocity Measurement Devices during the Jump Shrug and Hang High Pull. J. Funct. Morphol. Kinesiol. 2023, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, D.E.; Guy, J.H.; Elsworthy, N.; Kean, C. Validity of the PUSH band 2.0 and Speed4lifts to measure velocity during upper and lower body free-weight resistance exercises. J. Sports Sci. 2022, 40, 968–975. [Google Scholar] [CrossRef]
- Balsalobre-Fernandez, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Revicki, D.; Hays, R.D.; Cella, D.; Sloan, J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J. Clin. Epidemiol. 2008, 61, 102–109. [Google Scholar] [CrossRef]
- Orange, S.T.; Metcalfe, J.W.; Marshall, P.; Vince, R.V.; Madden, L.A.; Liefeith, A. Test-Retest Reliability of a Commercial Linear Position Transducer (GymAware PowerTool) to Measure Velocity and Power in the Back Squat and Bench Press. J. Strength Cond. Res. 2020, 34, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- Martins, W.P.; Nastri, C.O. Interpreting reproducibility results for ultrasound measurements. Ultrasound Obstet. Gynecol. 2014, 43, 479–480. [Google Scholar] [CrossRef]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of relative load from bar velocity in the full back squat exercise. Sports Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Perez-Castilla, A.; Boullosa, D.; Garcia-Ramos, A. Reliability and Validity of the iLOAD Application for Monitoring the Mean Set Velocity During the Back Squat and Bench Press Exercises Performed Against Different Loads. J. Strength Cond. Res. 2021, 35, S57–S65. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Chalkley, D.; Johnston, R.; Garcia-Ramos, A.; Townshend, A.; Dorrell, H.; Pearson, M.; Morrison, M.; Cole, M. Criterion Validity, and Interunit and Between-Day Reliability of the FLEX for Measuring Barbell Velocity During Commonly Used Resistance Training Exercises. J. Strength Cond. Res. 2020, 34, 1519–1524. [Google Scholar] [CrossRef]
- Weakley, J.; Munteanu, G.; Cowley, N.; Johnston, R.; Morrison, M.; Gardiner, C.; Perez-Castilla, A.; Garcia-Ramos, A. The Criterion Validity and Between-Day Reliability of the Perch for Measuring Barbell Velocity During Commonly Used Resistance Training Exercises. J. Strength Cond. Res. 2023, 37, 787–792. [Google Scholar] [CrossRef]
- Courel-Ibanez, J.; Martinez-Cava, A.; Hernandez-Belmonte, A.; Gonzalez-Badillo, J.J.; Pallares, J.G. Technical Note on the Reliability of the PowerLift App for Velocity-Based Resistance Training Purposes: Response. Ann. Biomed. Eng. 2020, 48, 6–8. [Google Scholar] [CrossRef]
- Fernandes, J.F.T.; Lamb, K.L.; Clark, C.C.T.; Moran, J.; Drury, B.; Garcia-Ramos, A.; Twist, C. Comparison of the FitroDyne and GymAware Rotary Encoders for Quantifying Peak and Mean Velocity During Traditional Multijointed Exercises. J. Strength Cond. Res. 2021, 35, 1760–1765. [Google Scholar] [CrossRef]
- Pallares, J.G.; Sanchez-Medina, L.; Perez, C.E.; De La Cruz-Sanchez, E.; Mora-Rodriguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef]
MAGNITUDE OF ERROR | AGREEMENT | ||||||||
---|---|---|---|---|---|---|---|---|---|
SEM (m·s−1) | SDC (m·s−1) | CV (%) | MESEE (%1RM) | MEBIAS (%1RM) | ICC (CI 95%) | CCC [DEV (%)] | MSD [DEV (%)] | VMD [DEV (%)] | |
POOLED | |||||||||
TF-VT1 | 0.0316 | 0.0877 | 4.1 | 6.4 | 7.8 | 0.998 (0.997–0.998) | 0.996 [0.41] | 0.0010 [0.10] | 0.0007 [0.07] |
TF-VT2 | 0.0367 | 0.1018 | 4.5 | 6.4 | 8.9 | 0.995 (0.994–0.996) | 0.998 [0.24] | 0.0006 [0.06] | 0.0006 [0.06] |
VT1-VT2 | 0.0182 | 0.0504 | 2.2 | 5.6 | 6.1 | 0.999 (0.999–0.999) | 0.998 [0.24] | 0.0006 [0.06] | 0.0004 [0.04] |
>1.20 m·s−1 | |||||||||
TF-VT1 | 0.0447 | 0.1240 | 3.2 | 6.4 | 6.8 | 0.963 (0.933–0.980) | 0.931 [6.89] | 0.0031 [0.31] | 0.0006 [0.06] |
TF-VT2 | 0.0548 | 0.1518 | 3.9 | 7.8 | 7.6 | 0.918 (0.851–0.955) | 0.857 [14.31] | 0.0063 [0.63] | 0.0007 [0.07] |
VT1-VT2 | 0.0280 | 0.0777 | 2.0 | 9.4 | 9.0 | 0.980 (0.964–0.989) | 0.960 [4.03] | 0.0016 [0.16] | 0.0010 [0.10] |
1.20–0.95 m·s−1 | |||||||||
TF-VT1 | 0.0316 | 0.0877 | 2.9 | 6.4 | 6.3 | 0.873 (0.753–0.935) | 0.793 [20.74] | 0.0024 [0.24] | 0.0005 [0.05] |
TF-VT2 | 0.0447 | 0.1240 | 4.1 | 6.2 | 6.3 | 0.790 (0.590–0.892) | 0.698 [30.15] | 0.0046 [0.46] | 0.0005 [0.05] |
VT1-VT2 | 0.0218 | 0.0605 | 2.0 | 6.4 | 6.3 | 0.950 (0.902–0.975) | 0.906 [9.37] | 0.0010 [0.10] | 0.0005 [0.05] |
0.95–0.70 m·s−1 | |||||||||
TF-VT1 | 0.0316 | 0.0877 | 3.8 | 7.6 | 7.5 | 0.930 (0.884–0.957) | 0.978 [2.25] | 0.0013 [0.13] | 0.0007 [0.07] |
TF-VT2 | 0.0336 | 0.0933 | 4.1 | 7.3 | 7.2 | 0.883 (0.807–0.929) | 0.883 [11.72] | 0.0023 [0.23] | 0.0007 [0.07] |
VT1-VT2 | 0.0133 | 0.0370 | 1.6 | 4.2 | 4.1 | 0.977 (0.961–0.986) | 0.955 [4.49] | 0.0004 [0.04] | 0.0002 [0.02] |
0.70–0.45 m·s−1 | |||||||||
TF-VT1 | 0.0206 | 0.0570 | 3.7 | 7.3 | 7.1 | 0.963 (0.940–0.977) | 0.929 [7.12] | 0.0009 [0.09] | 0.0007 [0.07] |
TF-VT2 | 0.0316 | 0.0877 | 5.4 | 7.0 | 6.9 | 0.948 (0.911–0.970) | 0.903 [9.68] | 0.0012 [0.12] | 0.0006 [0.06] |
VT1-VT2 | 0.0154 | 0.0426 | 2.7 | 5.3 | 5.3 | 0.973 (0.953–0.985) | 0.947 [5.26] | 0.0005 [0.05] | 0.0004 [0.04] |
<0.45 m·s−1 | |||||||||
TF-VT1 | 0.0097 | 0.03 | 3.0 | 2.9 | 3.1 | 0.992 (0.987–0.995) | 0.984 [1.58] | 0.0002 [0.02] | 0.0001 [0.01] |
TF-VT2 | 0.0128 | 0.04 | 4.0 | 3.1 | 3.4 | 0.986 (0.976–0.992) | 0.973 [2.69] | 0.0003 [0.03] | 0.0001 [0.01] |
VT1-VT2 | 0.0072 | 0.02 | 2.2 | 2.2 | 2.4 | 0.995 (0.992–0.997) | 0.991 [0.91] | 0.0001 [0.01] | 0.0001 [0.01] |
MAGNITUDE OF ERROR | AGREEMENT | ||||||||
---|---|---|---|---|---|---|---|---|---|
SEM (m·s−1) | SDC (m·s−1) | CV (%) | MESEE (%1RM) | MEBIAS (%1RM) | ICC (CI 95%) | CCC [DEV (%)] | MSD [DEV (%)] | VMD [DEV (%)] | |
POOLED | |||||||||
TF-VT1 | 0.0792 | 0.2196 | 5.9 | 11.4 | 23.4 | 0.990 (0.988–0.993) | 0.981 [1.89] | 0.0129 [1.29] | 0.0070 [0.70] |
TF-VT2 | 0.0632 | 0.1753 | 4.6 | 11.8 | 20.5 | 0.995 (0.993–0.996) | 0.990 [1.10] | 0.0076 [0.76] | 0.0053 [0.54] |
VT1-VT2 | 0.0316 | 0.0877 | 2.4 | 8.8 | 8.3 | 0.998 (0.998–0.999) | 0.997 [0.30] | 0.0018 [0.18] | 0.0009 [0.09] |
>1.20 m·s−1 | |||||||||
TF-VT1 | 0.1643 | 0.4555 | 7.2 | 12.1 | 21.8 | 0.754 (0.551–0.865) | 0.663 [33.67] | 0.0531 [5.31] | 0.0061 [0.61] |
TF-VT2 | 0.1304 | 0.3614 | 5.6 | 12.4 | 20.1 | 0.847 (0.718–0.917) | 0.760 [23.97] | 0.0331 [3.31] | 0.0051 [0.51] |
VT1-VT2 | 0.0471 | 0.1306 | 2.1 | 14.7 | 8.2 | 0.972 (0.949–0.985) | 0.947 [5.34] | 0.0045 [0.45] | 0.0008 [0.08] |
1.20–0.95 m·s−1 | |||||||||
TF-VT1 | 0.0775 | 0.2147 | 4.4 | 7.2 | 9.9 | 0.832 (0.672–0.914) | 0.663 [33.67] | 0.0130 [1.30] | 0.0061 [0.61] |
TF-VT2 | 0.0571 | 0.1581 | 3.2 | 9.1 | 10.2 | 0.919 (0.840–0.959) | 0.760 [23.97] | 0.0065 [0.65] | 0.0051 [0.51] |
VT1-VT2 | 0.0314 | 0.0869 | 1.8 | 8.8 | 7.6 | 0.970 (0.941–0.985) | 0.947 [5.34] | 0.0020 [0.20] | 0.0008 [0.08] |
0.95–0.70 m·s−1 | |||||||||
TF-VT1 | 0.0483 | 0.1339 | 3.6 | 9.8 | 10.1 | 0.941 (0.904–0.964) | 0.893 [10.73] | 0.0047 [0.47] | 0.0013 [0.13] |
TF-VT2 | 0.0316 | 0.0877 | 2.3 | 8.8 | 9.6 | 0.977 (0.963–0.986) | 0.956 [4.44] | 0.0018 [0.18] | 0.0013 [0.13] |
VT1-VT2 | 0.0289 | 0.0802 | 2.2 | 7.5 | 6.5 | 0.976 (0.961–0.985) | 0.954 [4.59] | 0.0017 [0.17] | 0.0005 [0.05] |
0.70–0.45 m·s−1 | |||||||||
TF-VT1 | 0.0289 | 0.0800 | 2.9 | 9.8 | 7.7 | 0.978 (0.962–0.987) | 0.964 [0.95] | 0.0014 [0.14] | 0.0006 [0.02] |
TF-VT2 | 0.0316 | 0.0877 | 3.1 | 10.1 | 6.2 | 0.986 (0.976–0.992) | 0.987 [1.34] | 0.0005 [0.05] | 0.0005 [0.05] |
VT1-VT2 | 0.0202 | 0.0561 | 2.0 | 6.2 | 5.4 | 0.988 (0.980–0.993) | 0.977 [2.28] | 0.0008 [0.08] | 0.0004 [0.04] |
<0.45 m·s−1 | |||||||||
TF-VT1 | 0.0127 | 0.0351 | 1.9 | 4.2 | 6.2 | 0.995 (0.992–0.997) | 0.991 [0.95] | 0.0003 [0.03] | 0.0002 [0.02] |
TF-VT2 | 0.0124 | 0.0343 | 1.9 | 5.2 | 4.6 | 0.996 (0.993–0.998) | 0.991 [1.34] | 0.0003 [0.03] | 0.0003 [0.05] |
VT1-VT2 | 0.0175 | 0.0485 | 2.6 | 6.1 | 5.5 | 0.991 (0.984–0.995) | 0.981 [1.86] | 0.0006 [0.06] | 0.0004 [0.04] |
MAGNITUDE OF ERROR | AGREEMENT | ||||||||
---|---|---|---|---|---|---|---|---|---|
SEM (m·s−1) | SDC (m·s−1) | CV (%) | MESEE (%1RM) | MEBIAS (%1RM) | ICC (CI 95%) | CCC [DEV (%)] | MSD [DEV (%)] | VMD [DEV (%)] | |
POOLED | |||||||||
TF-VT1 | 0.0226 | 0.0626 | 2.0 | 7.5 | 7.5 | 0.998 (0.997–0.998) | 0.996 [0.41] | 0.0010 [0.10] | 0.0007 [0.07] |
TF-VT2 | 0.0169 | 0.0469 | 1.5 | 6.6 | 6.6 | 0.999 (0.999–0.999) | 0.998 [0.24] | 0.0006 [0.06] | 0.0006 [0.06] |
VT1-VT2 | 0.0173 | 0.0479 | 1.6 | 5.4 | 5.5 | 0.999 (0.999–0.999) | 0.998 [0.24] | 0.0006 [0.06] | 0.0004 [0.04] |
>1.50 m·s−1 | |||||||||
TF-VT1 | 0.0314 | 0.0871 | 1.9 | 11.4 | 13.0 | 0.946 (0.912–0.967) | 0.897 [10.28] | 0.0015 [0.15] | 0.0016 [0.16] |
TF-VT2 | 0.0311 | 0.0863 | 1.9 | 12.8 | 14.5 | 0.926 (0.874–0.956) | 0.859 [14.05] | 0.0020 [0.20] | 0.0020 [0.20] |
VT1-VT2 | 0.0353 | 0.0977 | 2.2 | 13.4 | 15.8 | 0.916 (0.856–0.951) | 0.844 [15.62] | 0.0025 [0.25] | 0.0024 [0.24] |
1.50–1.25 m·s−1 | |||||||||
TF-VT1 | 0.0316 | 0.0877 | 2.3 | 11.8 | 10.6 | 0.909 (0.860–0.941) | 0.836 [16.39] | 0.0023 [0.23] | 0.0014 [0.14] |
TF-VT2 | 0.0269 | 0.0744 | 2.0 | 10.6 | 10.6 | 0.940 (0.906–0.962) | 0.885 [11.46] | 0.0014 [0.15] | 0.0014 [0.14] |
VT1-VT2 | 0.0210 | 0.0581 | 1.5 | 5.9 | 6.1 | 0.961 (0.939–0.975) | 0.926 [7.37] | 0.0004 [0.04] | 0.0005 [0.05] |
1.25–1.00 m·s−1 | |||||||||
TF-VT1 | 0.0192 | 0.0531 | 1.7 | 5.9 | 6.0 | 0.964 (0.945–0.976) | 0.936 [6.43] | 0.0007 [0.07] | 0.0005 [0.05] |
TF-VT2 | 0.0140 | 0.0389 | 1.3 | 5.6 | 5.6 | 0.981 (0.972–0.988) | 0.963 [3.68] | 0.0004 [0.04] | 0.0004 [0.04] |
VT1-VT2 | 0.0184 | 0.0510 | 1.7 | 5.6 | 5.5 | 0.968 (0.952–0.979) | 0.978 [2.22] | 0.0007 [0.07] | 0.0004 [0.04] |
1.00–0.75 m·s−1 | |||||||||
TF-VT1 | 0.0192 | 0.0531 | 2.2 | 5.3 | 5.3 | 0.966 (0.949–0.978) | 0.936 [6.43] | 0.0007 [0.07] | 0.0004 [0.04] |
TF-VT2 | 0.0162 | 0.0451 | 1.8 | 6.2 | 6.2 | 0.974 (0.961–0.983) | 0.950 [5.02] | 0.0005 [0.05] | 0.0005 [0.05] |
VT1-VT2 | 0.0144 | 0.0398 | 1.6 | 4.5 | 4.6 | 0.980 (0.970–0.987) | 0.962 [3.83] | 0.0001 [0.01] | 0.0003 [0.03] |
<0.75 m·s−1 | |||||||||
TF-VT1 | 0.0192 | 0.0531 | 3.2 | 2.8 | 2.9 | 0.992 (0.988–0.995) | 0.985 [1.54] | 0.0002 [0.02] | 0.0001 [0.01] |
TF-VT2 | 0.0076 | 0.0211 | 1.3 | 2.8 | 2.8 | 0.996 (0.994–0.998) | 0.992 [0.77] | 0.0001 [0.01] | 0.0001 [0.01] |
VT1-VT2 | 0.0098 | 0.0270 | 1.6 | 3.1 | 3.2 | 0.996 (0.993–0.997) | 0.991 [0.87] | 0.0002 [0.02] | 0.0001 [0.01] |
MAGNITUDE OF ERROR | AGREEMENT | ||||||||
---|---|---|---|---|---|---|---|---|---|
SEM (m·s−1) | SDC (m·s−1) | CV (%) | MESEE (%1RM) | MEBIAS (%1RM) | ICC (CI 95%) | CCC [DEV (%)] | MSD [DEV (%)] | VMD [DEV (%)] | |
POOLED | |||||||||
TF-VT1 | 0.0894 | 0.2479 | 5.0 | 12.1 | 18.9 | 0.966 (0.958–0.972) | 0.937 [6.34] | 0.0165 [1.65] | 0.0046 [0.46] |
TF-VT2 | 0.0847 | 0.2347 | 4.1 | 26.1 | 22.4 | 0.970 (0.963–0.975) | 0.953 [4.56] | 0.0114 [1.14] | 0.0064 [0.64] |
VT1-VT2 | 0.0548 | 0.1518 | 3.1 | 23.2 | 17.9 | 0.986 (0.982–0.988) | 0.976 [2.52] | 0.0054 [0.54] | 0.0041 [0.41] |
>1.50 m·s−1 | |||||||||
TF-VT1 | 0.1414 | 0.3925 | 6.2 | 6.5 | 20.7 | 0.695 (0.516–0.809) | 0.611 [38.88] | 0.0409 [4.09] | 0.0054 [0.54] |
TF-VT2 | 0.1517 | 0.4204 | 6.6 | 6.1 | 38.8 | 0.696 (0.506–0.813) | 0.588 [41.20] | 0.0466 [4.66] | 0.0192 [1.92] |
VT1-VT2 | 0.0915 | 0.2535 | 4.2 | 7.8 | 36.1 | 0.849 (0.756–0.907) | 0.736 [26.42] | 0.0170 [1.70] | 0.0166 [1.66] |
1.50–1.25 m·s−1 | |||||||||
TF-VT1 | 0.1000 | 0.2772 | 5.0 | 13.1 | 20.7 | 0.812 (0.710–0.878) | 0.611 [38.88] | 0.0409 [4.09] | 0.0054 [0.54] |
TF-VT2 | 0.0861 | 0.2386 | 4.3 | 41.2 | 38.8 | 0.866 (0.790–0.914) | 0.588 [41.20] | 0.0475 [4.66] | 0.0192 [1.92] |
VT1-VT2 | 0.0716 | 0.1984 | 3.7 | 42.5 | 36.1 | 0.882 (0.816–0.925) | 0.736 [26.42] | 0.0170 [1.70] | 0.0166 [1.66] |
1.25–1.00 m·s−1 | |||||||||
TF-VT1 | 0.0775 | 0.2150 | 4.4 | 13.1 | 11.8 | 0.885 (0.827–0.923) | 0.810 [19.03] | 0.0123 [1.23] | 0.0018 [0.18] |
TF-VT2 | 0.0708 | 0.1962 | 4.0 | 29.1 | 22.1 | 0.923 (0.884–0.949) | 0.860 [14.03] | 0.0101 [1.01] | 0.0062 [0.62] |
VT1-VT2 | 0.0316 | 0.0877 | 1.8 | 30.1 | 8.5 | 0.986 (0.978–0.990) | 0.972 [2.84] | 0.0020 [0.20] | 0.0009 [0.09] |
1.00–0.75 m·s−1 | |||||||||
TF-VT1 | 0.0624 | 0.17 | 4.0 | 9.1 | 12.4 | 0.903 (0.851–0.937) | 0.834 [16.65] | 0.0078 [0.78] | 0.0020 [0.20] |
TF-VT2 | 0.0447 | 0.1240 | 2.9 | 25.8 | 10.3 | 0.958 (0.935–0.973) | 0.921 [7.92] | 0.0035 [0.35] | 0.0013 [0.13] |
VT1-VT2 | 0.0316 | 0.0877 | 2.1 | 9.8 | 7.1 | 0.977 (0.964–0.985) | 0.955 [4.50] | 0.0016 [0.16] | 0.0006 [0.06] |
<0.75 m·s−1 | |||||||||
TF-VT1 | 0.0438 | 0.1213 | 3.2 | 11.1 | 8.2 | 0.920 (0.871–0.950) | 0.859 [14.06] | 0.0038 [0.38] | 0.0009 [0.09] |
TF-VT2 | 0.0316 | 0.0877 | 2.3 | 9.1 | 7.1 | 0.970 (0.951–0.981) | 0.942 [5.80] | 0.0015 [0.15] | 0.0006 [0.06] |
VT1-VT2 | 0.0316 | 0.0877 | 2.3 | 8.5 | 6.8 | 0.971 (0.954–0.983) | 0.945 [5.51] | 0.0012 [0.12] | 0.0006 [0.06] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Galán, J.; Herrera-Bermudo, J.C.; González-Badillo, J.J.; Rodríguez-Rosell, D. Validity and Concordance of a Linear Position Transducer (Vitruve) for Measuring Movement Velocity during Resistance Training. Sensors 2024, 24, 6444. https://doi.org/10.3390/s24196444
González-Galán J, Herrera-Bermudo JC, González-Badillo JJ, Rodríguez-Rosell D. Validity and Concordance of a Linear Position Transducer (Vitruve) for Measuring Movement Velocity during Resistance Training. Sensors. 2024; 24(19):6444. https://doi.org/10.3390/s24196444
Chicago/Turabian StyleGonzález-Galán, Jaime, José Carlos Herrera-Bermudo, Juan José González-Badillo, and David Rodríguez-Rosell. 2024. "Validity and Concordance of a Linear Position Transducer (Vitruve) for Measuring Movement Velocity during Resistance Training" Sensors 24, no. 19: 6444. https://doi.org/10.3390/s24196444